Hacked By AnonymousFox
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import annotations
import binascii
import enum
import os
import re
import typing
import warnings
from base64 import encodebytes as _base64_encode
from dataclasses import dataclass
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import (
dsa,
ec,
ed25519,
padding,
rsa,
)
from cryptography.hazmat.primitives.asymmetric import utils as asym_utils
from cryptography.hazmat.primitives.ciphers import (
AEADDecryptionContext,
Cipher,
algorithms,
modes,
)
from cryptography.hazmat.primitives.serialization import (
Encoding,
KeySerializationEncryption,
NoEncryption,
PrivateFormat,
PublicFormat,
_KeySerializationEncryption,
)
try:
from bcrypt import kdf as _bcrypt_kdf
_bcrypt_supported = True
except ImportError:
_bcrypt_supported = False
def _bcrypt_kdf(
password: bytes,
salt: bytes,
desired_key_bytes: int,
rounds: int,
ignore_few_rounds: bool = False,
) -> bytes:
raise UnsupportedAlgorithm("Need bcrypt module")
_SSH_ED25519 = b"ssh-ed25519"
_SSH_RSA = b"ssh-rsa"
_SSH_DSA = b"ssh-dss"
_ECDSA_NISTP256 = b"ecdsa-sha2-nistp256"
_ECDSA_NISTP384 = b"ecdsa-sha2-nistp384"
_ECDSA_NISTP521 = b"ecdsa-sha2-nistp521"
_CERT_SUFFIX = b"-cert-v01@openssh.com"
# These are not key types, only algorithms, so they cannot appear
# as a public key type
_SSH_RSA_SHA256 = b"rsa-sha2-256"
_SSH_RSA_SHA512 = b"rsa-sha2-512"
_SSH_PUBKEY_RC = re.compile(rb"\A(\S+)[ \t]+(\S+)")
_SK_MAGIC = b"openssh-key-v1\0"
_SK_START = b"-----BEGIN OPENSSH PRIVATE KEY-----"
_SK_END = b"-----END OPENSSH PRIVATE KEY-----"
_BCRYPT = b"bcrypt"
_NONE = b"none"
_DEFAULT_CIPHER = b"aes256-ctr"
_DEFAULT_ROUNDS = 16
# re is only way to work on bytes-like data
_PEM_RC = re.compile(_SK_START + b"(.*?)" + _SK_END, re.DOTALL)
# padding for max blocksize
_PADDING = memoryview(bytearray(range(1, 1 + 16)))
@dataclass
class _SSHCipher:
alg: typing.Type[algorithms.AES]
key_len: int
mode: typing.Union[
typing.Type[modes.CTR],
typing.Type[modes.CBC],
typing.Type[modes.GCM],
]
block_len: int
iv_len: int
tag_len: typing.Optional[int]
is_aead: bool
# ciphers that are actually used in key wrapping
_SSH_CIPHERS: typing.Dict[bytes, _SSHCipher] = {
b"aes256-ctr": _SSHCipher(
alg=algorithms.AES,
key_len=32,
mode=modes.CTR,
block_len=16,
iv_len=16,
tag_len=None,
is_aead=False,
),
b"aes256-cbc": _SSHCipher(
alg=algorithms.AES,
key_len=32,
mode=modes.CBC,
block_len=16,
iv_len=16,
tag_len=None,
is_aead=False,
),
b"aes256-gcm@openssh.com": _SSHCipher(
alg=algorithms.AES,
key_len=32,
mode=modes.GCM,
block_len=16,
iv_len=12,
tag_len=16,
is_aead=True,
),
}
# map local curve name to key type
_ECDSA_KEY_TYPE = {
"secp256r1": _ECDSA_NISTP256,
"secp384r1": _ECDSA_NISTP384,
"secp521r1": _ECDSA_NISTP521,
}
def _get_ssh_key_type(
key: typing.Union[SSHPrivateKeyTypes, SSHPublicKeyTypes]
) -> bytes:
if isinstance(key, ec.EllipticCurvePrivateKey):
key_type = _ecdsa_key_type(key.public_key())
elif isinstance(key, ec.EllipticCurvePublicKey):
key_type = _ecdsa_key_type(key)
elif isinstance(key, (rsa.RSAPrivateKey, rsa.RSAPublicKey)):
key_type = _SSH_RSA
elif isinstance(key, (dsa.DSAPrivateKey, dsa.DSAPublicKey)):
key_type = _SSH_DSA
elif isinstance(
key, (ed25519.Ed25519PrivateKey, ed25519.Ed25519PublicKey)
):
key_type = _SSH_ED25519
else:
raise ValueError("Unsupported key type")
return key_type
def _ecdsa_key_type(public_key: ec.EllipticCurvePublicKey) -> bytes:
"""Return SSH key_type and curve_name for private key."""
curve = public_key.curve
if curve.name not in _ECDSA_KEY_TYPE:
raise ValueError(
f"Unsupported curve for ssh private key: {curve.name!r}"
)
return _ECDSA_KEY_TYPE[curve.name]
def _ssh_pem_encode(
data: bytes,
prefix: bytes = _SK_START + b"\n",
suffix: bytes = _SK_END + b"\n",
) -> bytes:
return b"".join([prefix, _base64_encode(data), suffix])
def _check_block_size(data: bytes, block_len: int) -> None:
"""Require data to be full blocks"""
if not data or len(data) % block_len != 0:
raise ValueError("Corrupt data: missing padding")
def _check_empty(data: bytes) -> None:
"""All data should have been parsed."""
if data:
raise ValueError("Corrupt data: unparsed data")
def _init_cipher(
ciphername: bytes,
password: typing.Optional[bytes],
salt: bytes,
rounds: int,
) -> Cipher[typing.Union[modes.CBC, modes.CTR, modes.GCM]]:
"""Generate key + iv and return cipher."""
if not password:
raise ValueError("Key is password-protected.")
ciph = _SSH_CIPHERS[ciphername]
seed = _bcrypt_kdf(
password, salt, ciph.key_len + ciph.iv_len, rounds, True
)
return Cipher(
ciph.alg(seed[: ciph.key_len]),
ciph.mode(seed[ciph.key_len :]),
)
def _get_u32(data: memoryview) -> typing.Tuple[int, memoryview]:
"""Uint32"""
if len(data) < 4:
raise ValueError("Invalid data")
return int.from_bytes(data[:4], byteorder="big"), data[4:]
def _get_u64(data: memoryview) -> typing.Tuple[int, memoryview]:
"""Uint64"""
if len(data) < 8:
raise ValueError("Invalid data")
return int.from_bytes(data[:8], byteorder="big"), data[8:]
def _get_sshstr(data: memoryview) -> typing.Tuple[memoryview, memoryview]:
"""Bytes with u32 length prefix"""
n, data = _get_u32(data)
if n > len(data):
raise ValueError("Invalid data")
return data[:n], data[n:]
def _get_mpint(data: memoryview) -> typing.Tuple[int, memoryview]:
"""Big integer."""
val, data = _get_sshstr(data)
if val and val[0] > 0x7F:
raise ValueError("Invalid data")
return int.from_bytes(val, "big"), data
def _to_mpint(val: int) -> bytes:
"""Storage format for signed bigint."""
if val < 0:
raise ValueError("negative mpint not allowed")
if not val:
return b""
nbytes = (val.bit_length() + 8) // 8
return utils.int_to_bytes(val, nbytes)
class _FragList:
"""Build recursive structure without data copy."""
flist: typing.List[bytes]
def __init__(
self, init: typing.Optional[typing.List[bytes]] = None
) -> None:
self.flist = []
if init:
self.flist.extend(init)
def put_raw(self, val: bytes) -> None:
"""Add plain bytes"""
self.flist.append(val)
def put_u32(self, val: int) -> None:
"""Big-endian uint32"""
self.flist.append(val.to_bytes(length=4, byteorder="big"))
def put_u64(self, val: int) -> None:
"""Big-endian uint64"""
self.flist.append(val.to_bytes(length=8, byteorder="big"))
def put_sshstr(self, val: typing.Union[bytes, _FragList]) -> None:
"""Bytes prefixed with u32 length"""
if isinstance(val, (bytes, memoryview, bytearray)):
self.put_u32(len(val))
self.flist.append(val)
else:
self.put_u32(val.size())
self.flist.extend(val.flist)
def put_mpint(self, val: int) -> None:
"""Big-endian bigint prefixed with u32 length"""
self.put_sshstr(_to_mpint(val))
def size(self) -> int:
"""Current number of bytes"""
return sum(map(len, self.flist))
def render(self, dstbuf: memoryview, pos: int = 0) -> int:
"""Write into bytearray"""
for frag in self.flist:
flen = len(frag)
start, pos = pos, pos + flen
dstbuf[start:pos] = frag
return pos
def tobytes(self) -> bytes:
"""Return as bytes"""
buf = memoryview(bytearray(self.size()))
self.render(buf)
return buf.tobytes()
class _SSHFormatRSA:
"""Format for RSA keys.
Public:
mpint e, n
Private:
mpint n, e, d, iqmp, p, q
"""
def get_public(self, data: memoryview):
"""RSA public fields"""
e, data = _get_mpint(data)
n, data = _get_mpint(data)
return (e, n), data
def load_public(
self, data: memoryview
) -> typing.Tuple[rsa.RSAPublicKey, memoryview]:
"""Make RSA public key from data."""
(e, n), data = self.get_public(data)
public_numbers = rsa.RSAPublicNumbers(e, n)
public_key = public_numbers.public_key()
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[rsa.RSAPrivateKey, memoryview]:
"""Make RSA private key from data."""
n, data = _get_mpint(data)
e, data = _get_mpint(data)
d, data = _get_mpint(data)
iqmp, data = _get_mpint(data)
p, data = _get_mpint(data)
q, data = _get_mpint(data)
if (e, n) != pubfields:
raise ValueError("Corrupt data: rsa field mismatch")
dmp1 = rsa.rsa_crt_dmp1(d, p)
dmq1 = rsa.rsa_crt_dmq1(d, q)
public_numbers = rsa.RSAPublicNumbers(e, n)
private_numbers = rsa.RSAPrivateNumbers(
p, q, d, dmp1, dmq1, iqmp, public_numbers
)
private_key = private_numbers.private_key()
return private_key, data
def encode_public(
self, public_key: rsa.RSAPublicKey, f_pub: _FragList
) -> None:
"""Write RSA public key"""
pubn = public_key.public_numbers()
f_pub.put_mpint(pubn.e)
f_pub.put_mpint(pubn.n)
def encode_private(
self, private_key: rsa.RSAPrivateKey, f_priv: _FragList
) -> None:
"""Write RSA private key"""
private_numbers = private_key.private_numbers()
public_numbers = private_numbers.public_numbers
f_priv.put_mpint(public_numbers.n)
f_priv.put_mpint(public_numbers.e)
f_priv.put_mpint(private_numbers.d)
f_priv.put_mpint(private_numbers.iqmp)
f_priv.put_mpint(private_numbers.p)
f_priv.put_mpint(private_numbers.q)
class _SSHFormatDSA:
"""Format for DSA keys.
Public:
mpint p, q, g, y
Private:
mpint p, q, g, y, x
"""
def get_public(
self, data: memoryview
) -> typing.Tuple[typing.Tuple, memoryview]:
"""DSA public fields"""
p, data = _get_mpint(data)
q, data = _get_mpint(data)
g, data = _get_mpint(data)
y, data = _get_mpint(data)
return (p, q, g, y), data
def load_public(
self, data: memoryview
) -> typing.Tuple[dsa.DSAPublicKey, memoryview]:
"""Make DSA public key from data."""
(p, q, g, y), data = self.get_public(data)
parameter_numbers = dsa.DSAParameterNumbers(p, q, g)
public_numbers = dsa.DSAPublicNumbers(y, parameter_numbers)
self._validate(public_numbers)
public_key = public_numbers.public_key()
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[dsa.DSAPrivateKey, memoryview]:
"""Make DSA private key from data."""
(p, q, g, y), data = self.get_public(data)
x, data = _get_mpint(data)
if (p, q, g, y) != pubfields:
raise ValueError("Corrupt data: dsa field mismatch")
parameter_numbers = dsa.DSAParameterNumbers(p, q, g)
public_numbers = dsa.DSAPublicNumbers(y, parameter_numbers)
self._validate(public_numbers)
private_numbers = dsa.DSAPrivateNumbers(x, public_numbers)
private_key = private_numbers.private_key()
return private_key, data
def encode_public(
self, public_key: dsa.DSAPublicKey, f_pub: _FragList
) -> None:
"""Write DSA public key"""
public_numbers = public_key.public_numbers()
parameter_numbers = public_numbers.parameter_numbers
self._validate(public_numbers)
f_pub.put_mpint(parameter_numbers.p)
f_pub.put_mpint(parameter_numbers.q)
f_pub.put_mpint(parameter_numbers.g)
f_pub.put_mpint(public_numbers.y)
def encode_private(
self, private_key: dsa.DSAPrivateKey, f_priv: _FragList
) -> None:
"""Write DSA private key"""
self.encode_public(private_key.public_key(), f_priv)
f_priv.put_mpint(private_key.private_numbers().x)
def _validate(self, public_numbers: dsa.DSAPublicNumbers) -> None:
parameter_numbers = public_numbers.parameter_numbers
if parameter_numbers.p.bit_length() != 1024:
raise ValueError("SSH supports only 1024 bit DSA keys")
class _SSHFormatECDSA:
"""Format for ECDSA keys.
Public:
str curve
bytes point
Private:
str curve
bytes point
mpint secret
"""
def __init__(self, ssh_curve_name: bytes, curve: ec.EllipticCurve):
self.ssh_curve_name = ssh_curve_name
self.curve = curve
def get_public(
self, data: memoryview
) -> typing.Tuple[typing.Tuple, memoryview]:
"""ECDSA public fields"""
curve, data = _get_sshstr(data)
point, data = _get_sshstr(data)
if curve != self.ssh_curve_name:
raise ValueError("Curve name mismatch")
if point[0] != 4:
raise NotImplementedError("Need uncompressed point")
return (curve, point), data
def load_public(
self, data: memoryview
) -> typing.Tuple[ec.EllipticCurvePublicKey, memoryview]:
"""Make ECDSA public key from data."""
(curve_name, point), data = self.get_public(data)
public_key = ec.EllipticCurvePublicKey.from_encoded_point(
self.curve, point.tobytes()
)
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[ec.EllipticCurvePrivateKey, memoryview]:
"""Make ECDSA private key from data."""
(curve_name, point), data = self.get_public(data)
secret, data = _get_mpint(data)
if (curve_name, point) != pubfields:
raise ValueError("Corrupt data: ecdsa field mismatch")
private_key = ec.derive_private_key(secret, self.curve)
return private_key, data
def encode_public(
self, public_key: ec.EllipticCurvePublicKey, f_pub: _FragList
) -> None:
"""Write ECDSA public key"""
point = public_key.public_bytes(
Encoding.X962, PublicFormat.UncompressedPoint
)
f_pub.put_sshstr(self.ssh_curve_name)
f_pub.put_sshstr(point)
def encode_private(
self, private_key: ec.EllipticCurvePrivateKey, f_priv: _FragList
) -> None:
"""Write ECDSA private key"""
public_key = private_key.public_key()
private_numbers = private_key.private_numbers()
self.encode_public(public_key, f_priv)
f_priv.put_mpint(private_numbers.private_value)
class _SSHFormatEd25519:
"""Format for Ed25519 keys.
Public:
bytes point
Private:
bytes point
bytes secret_and_point
"""
def get_public(
self, data: memoryview
) -> typing.Tuple[typing.Tuple, memoryview]:
"""Ed25519 public fields"""
point, data = _get_sshstr(data)
return (point,), data
def load_public(
self, data: memoryview
) -> typing.Tuple[ed25519.Ed25519PublicKey, memoryview]:
"""Make Ed25519 public key from data."""
(point,), data = self.get_public(data)
public_key = ed25519.Ed25519PublicKey.from_public_bytes(
point.tobytes()
)
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[ed25519.Ed25519PrivateKey, memoryview]:
"""Make Ed25519 private key from data."""
(point,), data = self.get_public(data)
keypair, data = _get_sshstr(data)
secret = keypair[:32]
point2 = keypair[32:]
if point != point2 or (point,) != pubfields:
raise ValueError("Corrupt data: ed25519 field mismatch")
private_key = ed25519.Ed25519PrivateKey.from_private_bytes(secret)
return private_key, data
def encode_public(
self, public_key: ed25519.Ed25519PublicKey, f_pub: _FragList
) -> None:
"""Write Ed25519 public key"""
raw_public_key = public_key.public_bytes(
Encoding.Raw, PublicFormat.Raw
)
f_pub.put_sshstr(raw_public_key)
def encode_private(
self, private_key: ed25519.Ed25519PrivateKey, f_priv: _FragList
) -> None:
"""Write Ed25519 private key"""
public_key = private_key.public_key()
raw_private_key = private_key.private_bytes(
Encoding.Raw, PrivateFormat.Raw, NoEncryption()
)
raw_public_key = public_key.public_bytes(
Encoding.Raw, PublicFormat.Raw
)
f_keypair = _FragList([raw_private_key, raw_public_key])
self.encode_public(public_key, f_priv)
f_priv.put_sshstr(f_keypair)
_KEY_FORMATS = {
_SSH_RSA: _SSHFormatRSA(),
_SSH_DSA: _SSHFormatDSA(),
_SSH_ED25519: _SSHFormatEd25519(),
_ECDSA_NISTP256: _SSHFormatECDSA(b"nistp256", ec.SECP256R1()),
_ECDSA_NISTP384: _SSHFormatECDSA(b"nistp384", ec.SECP384R1()),
_ECDSA_NISTP521: _SSHFormatECDSA(b"nistp521", ec.SECP521R1()),
}
def _lookup_kformat(key_type: bytes):
"""Return valid format or throw error"""
if not isinstance(key_type, bytes):
key_type = memoryview(key_type).tobytes()
if key_type in _KEY_FORMATS:
return _KEY_FORMATS[key_type]
raise UnsupportedAlgorithm(f"Unsupported key type: {key_type!r}")
SSHPrivateKeyTypes = typing.Union[
ec.EllipticCurvePrivateKey,
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ed25519.Ed25519PrivateKey,
]
def load_ssh_private_key(
data: bytes,
password: typing.Optional[bytes],
backend: typing.Any = None,
) -> SSHPrivateKeyTypes:
"""Load private key from OpenSSH custom encoding."""
utils._check_byteslike("data", data)
if password is not None:
utils._check_bytes("password", password)
m = _PEM_RC.search(data)
if not m:
raise ValueError("Not OpenSSH private key format")
p1 = m.start(1)
p2 = m.end(1)
data = binascii.a2b_base64(memoryview(data)[p1:p2])
if not data.startswith(_SK_MAGIC):
raise ValueError("Not OpenSSH private key format")
data = memoryview(data)[len(_SK_MAGIC) :]
# parse header
ciphername, data = _get_sshstr(data)
kdfname, data = _get_sshstr(data)
kdfoptions, data = _get_sshstr(data)
nkeys, data = _get_u32(data)
if nkeys != 1:
raise ValueError("Only one key supported")
# load public key data
pubdata, data = _get_sshstr(data)
pub_key_type, pubdata = _get_sshstr(pubdata)
kformat = _lookup_kformat(pub_key_type)
pubfields, pubdata = kformat.get_public(pubdata)
_check_empty(pubdata)
if (ciphername, kdfname) != (_NONE, _NONE):
ciphername_bytes = ciphername.tobytes()
if ciphername_bytes not in _SSH_CIPHERS:
raise UnsupportedAlgorithm(
f"Unsupported cipher: {ciphername_bytes!r}"
)
if kdfname != _BCRYPT:
raise UnsupportedAlgorithm(f"Unsupported KDF: {kdfname!r}")
blklen = _SSH_CIPHERS[ciphername_bytes].block_len
tag_len = _SSH_CIPHERS[ciphername_bytes].tag_len
# load secret data
edata, data = _get_sshstr(data)
# see https://bugzilla.mindrot.org/show_bug.cgi?id=3553 for
# information about how OpenSSH handles AEAD tags
if _SSH_CIPHERS[ciphername_bytes].is_aead:
tag = bytes(data)
if len(tag) != tag_len:
raise ValueError("Corrupt data: invalid tag length for cipher")
else:
_check_empty(data)
_check_block_size(edata, blklen)
salt, kbuf = _get_sshstr(kdfoptions)
rounds, kbuf = _get_u32(kbuf)
_check_empty(kbuf)
ciph = _init_cipher(ciphername_bytes, password, salt.tobytes(), rounds)
dec = ciph.decryptor()
edata = memoryview(dec.update(edata))
if _SSH_CIPHERS[ciphername_bytes].is_aead:
assert isinstance(dec, AEADDecryptionContext)
_check_empty(dec.finalize_with_tag(tag))
else:
# _check_block_size requires data to be a full block so there
# should be no output from finalize
_check_empty(dec.finalize())
else:
# load secret data
edata, data = _get_sshstr(data)
_check_empty(data)
blklen = 8
_check_block_size(edata, blklen)
ck1, edata = _get_u32(edata)
ck2, edata = _get_u32(edata)
if ck1 != ck2:
raise ValueError("Corrupt data: broken checksum")
# load per-key struct
key_type, edata = _get_sshstr(edata)
if key_type != pub_key_type:
raise ValueError("Corrupt data: key type mismatch")
private_key, edata = kformat.load_private(edata, pubfields)
comment, edata = _get_sshstr(edata)
# yes, SSH does padding check *after* all other parsing is done.
# need to follow as it writes zero-byte padding too.
if edata != _PADDING[: len(edata)]:
raise ValueError("Corrupt data: invalid padding")
if isinstance(private_key, dsa.DSAPrivateKey):
warnings.warn(
"SSH DSA keys are deprecated and will be removed in a future "
"release.",
utils.DeprecatedIn40,
stacklevel=2,
)
return private_key
def _serialize_ssh_private_key(
private_key: SSHPrivateKeyTypes,
password: bytes,
encryption_algorithm: KeySerializationEncryption,
) -> bytes:
"""Serialize private key with OpenSSH custom encoding."""
utils._check_bytes("password", password)
if isinstance(private_key, dsa.DSAPrivateKey):
warnings.warn(
"SSH DSA key support is deprecated and will be "
"removed in a future release",
utils.DeprecatedIn40,
stacklevel=4,
)
key_type = _get_ssh_key_type(private_key)
kformat = _lookup_kformat(key_type)
# setup parameters
f_kdfoptions = _FragList()
if password:
ciphername = _DEFAULT_CIPHER
blklen = _SSH_CIPHERS[ciphername].block_len
kdfname = _BCRYPT
rounds = _DEFAULT_ROUNDS
if (
isinstance(encryption_algorithm, _KeySerializationEncryption)
and encryption_algorithm._kdf_rounds is not None
):
rounds = encryption_algorithm._kdf_rounds
salt = os.urandom(16)
f_kdfoptions.put_sshstr(salt)
f_kdfoptions.put_u32(rounds)
ciph = _init_cipher(ciphername, password, salt, rounds)
else:
ciphername = kdfname = _NONE
blklen = 8
ciph = None
nkeys = 1
checkval = os.urandom(4)
comment = b""
# encode public and private parts together
f_public_key = _FragList()
f_public_key.put_sshstr(key_type)
kformat.encode_public(private_key.public_key(), f_public_key)
f_secrets = _FragList([checkval, checkval])
f_secrets.put_sshstr(key_type)
kformat.encode_private(private_key, f_secrets)
f_secrets.put_sshstr(comment)
f_secrets.put_raw(_PADDING[: blklen - (f_secrets.size() % blklen)])
# top-level structure
f_main = _FragList()
f_main.put_raw(_SK_MAGIC)
f_main.put_sshstr(ciphername)
f_main.put_sshstr(kdfname)
f_main.put_sshstr(f_kdfoptions)
f_main.put_u32(nkeys)
f_main.put_sshstr(f_public_key)
f_main.put_sshstr(f_secrets)
# copy result info bytearray
slen = f_secrets.size()
mlen = f_main.size()
buf = memoryview(bytearray(mlen + blklen))
f_main.render(buf)
ofs = mlen - slen
# encrypt in-place
if ciph is not None:
ciph.encryptor().update_into(buf[ofs:mlen], buf[ofs:])
return _ssh_pem_encode(buf[:mlen])
SSHPublicKeyTypes = typing.Union[
ec.EllipticCurvePublicKey,
rsa.RSAPublicKey,
dsa.DSAPublicKey,
ed25519.Ed25519PublicKey,
]
SSHCertPublicKeyTypes = typing.Union[
ec.EllipticCurvePublicKey,
rsa.RSAPublicKey,
ed25519.Ed25519PublicKey,
]
class SSHCertificateType(enum.Enum):
USER = 1
HOST = 2
class SSHCertificate:
def __init__(
self,
_nonce: memoryview,
_public_key: SSHPublicKeyTypes,
_serial: int,
_cctype: int,
_key_id: memoryview,
_valid_principals: typing.List[bytes],
_valid_after: int,
_valid_before: int,
_critical_options: typing.Dict[bytes, bytes],
_extensions: typing.Dict[bytes, bytes],
_sig_type: memoryview,
_sig_key: memoryview,
_inner_sig_type: memoryview,
_signature: memoryview,
_tbs_cert_body: memoryview,
_cert_key_type: bytes,
_cert_body: memoryview,
):
self._nonce = _nonce
self._public_key = _public_key
self._serial = _serial
try:
self._type = SSHCertificateType(_cctype)
except ValueError:
raise ValueError("Invalid certificate type")
self._key_id = _key_id
self._valid_principals = _valid_principals
self._valid_after = _valid_after
self._valid_before = _valid_before
self._critical_options = _critical_options
self._extensions = _extensions
self._sig_type = _sig_type
self._sig_key = _sig_key
self._inner_sig_type = _inner_sig_type
self._signature = _signature
self._cert_key_type = _cert_key_type
self._cert_body = _cert_body
self._tbs_cert_body = _tbs_cert_body
@property
def nonce(self) -> bytes:
return bytes(self._nonce)
def public_key(self) -> SSHCertPublicKeyTypes:
# make mypy happy until we remove DSA support entirely and
# the underlying union won't have a disallowed type
return typing.cast(SSHCertPublicKeyTypes, self._public_key)
@property
def serial(self) -> int:
return self._serial
@property
def type(self) -> SSHCertificateType:
return self._type
@property
def key_id(self) -> bytes:
return bytes(self._key_id)
@property
def valid_principals(self) -> typing.List[bytes]:
return self._valid_principals
@property
def valid_before(self) -> int:
return self._valid_before
@property
def valid_after(self) -> int:
return self._valid_after
@property
def critical_options(self) -> typing.Dict[bytes, bytes]:
return self._critical_options
@property
def extensions(self) -> typing.Dict[bytes, bytes]:
return self._extensions
def signature_key(self) -> SSHCertPublicKeyTypes:
sigformat = _lookup_kformat(self._sig_type)
signature_key, sigkey_rest = sigformat.load_public(self._sig_key)
_check_empty(sigkey_rest)
return signature_key
def public_bytes(self) -> bytes:
return (
bytes(self._cert_key_type)
+ b" "
+ binascii.b2a_base64(bytes(self._cert_body), newline=False)
)
def verify_cert_signature(self) -> None:
signature_key = self.signature_key()
if isinstance(signature_key, ed25519.Ed25519PublicKey):
signature_key.verify(
bytes(self._signature), bytes(self._tbs_cert_body)
)
elif isinstance(signature_key, ec.EllipticCurvePublicKey):
# The signature is encoded as a pair of big-endian integers
r, data = _get_mpint(self._signature)
s, data = _get_mpint(data)
_check_empty(data)
computed_sig = asym_utils.encode_dss_signature(r, s)
hash_alg = _get_ec_hash_alg(signature_key.curve)
signature_key.verify(
computed_sig, bytes(self._tbs_cert_body), ec.ECDSA(hash_alg)
)
else:
assert isinstance(signature_key, rsa.RSAPublicKey)
if self._inner_sig_type == _SSH_RSA:
hash_alg = hashes.SHA1()
elif self._inner_sig_type == _SSH_RSA_SHA256:
hash_alg = hashes.SHA256()
else:
assert self._inner_sig_type == _SSH_RSA_SHA512
hash_alg = hashes.SHA512()
signature_key.verify(
bytes(self._signature),
bytes(self._tbs_cert_body),
padding.PKCS1v15(),
hash_alg,
)
def _get_ec_hash_alg(curve: ec.EllipticCurve) -> hashes.HashAlgorithm:
if isinstance(curve, ec.SECP256R1):
return hashes.SHA256()
elif isinstance(curve, ec.SECP384R1):
return hashes.SHA384()
else:
assert isinstance(curve, ec.SECP521R1)
return hashes.SHA512()
def _load_ssh_public_identity(
data: bytes,
_legacy_dsa_allowed=False,
) -> typing.Union[SSHCertificate, SSHPublicKeyTypes]:
utils._check_byteslike("data", data)
m = _SSH_PUBKEY_RC.match(data)
if not m:
raise ValueError("Invalid line format")
key_type = orig_key_type = m.group(1)
key_body = m.group(2)
with_cert = False
if key_type.endswith(_CERT_SUFFIX):
with_cert = True
key_type = key_type[: -len(_CERT_SUFFIX)]
if key_type == _SSH_DSA and not _legacy_dsa_allowed:
raise UnsupportedAlgorithm(
"DSA keys aren't supported in SSH certificates"
)
kformat = _lookup_kformat(key_type)
try:
rest = memoryview(binascii.a2b_base64(key_body))
except (TypeError, binascii.Error):
raise ValueError("Invalid format")
if with_cert:
cert_body = rest
inner_key_type, rest = _get_sshstr(rest)
if inner_key_type != orig_key_type:
raise ValueError("Invalid key format")
if with_cert:
nonce, rest = _get_sshstr(rest)
public_key, rest = kformat.load_public(rest)
if with_cert:
serial, rest = _get_u64(rest)
cctype, rest = _get_u32(rest)
key_id, rest = _get_sshstr(rest)
principals, rest = _get_sshstr(rest)
valid_principals = []
while principals:
principal, principals = _get_sshstr(principals)
valid_principals.append(bytes(principal))
valid_after, rest = _get_u64(rest)
valid_before, rest = _get_u64(rest)
crit_options, rest = _get_sshstr(rest)
critical_options = _parse_exts_opts(crit_options)
exts, rest = _get_sshstr(rest)
extensions = _parse_exts_opts(exts)
# Get the reserved field, which is unused.
_, rest = _get_sshstr(rest)
sig_key_raw, rest = _get_sshstr(rest)
sig_type, sig_key = _get_sshstr(sig_key_raw)
if sig_type == _SSH_DSA and not _legacy_dsa_allowed:
raise UnsupportedAlgorithm(
"DSA signatures aren't supported in SSH certificates"
)
# Get the entire cert body and subtract the signature
tbs_cert_body = cert_body[: -len(rest)]
signature_raw, rest = _get_sshstr(rest)
_check_empty(rest)
inner_sig_type, sig_rest = _get_sshstr(signature_raw)
# RSA certs can have multiple algorithm types
if (
sig_type == _SSH_RSA
and inner_sig_type
not in [_SSH_RSA_SHA256, _SSH_RSA_SHA512, _SSH_RSA]
) or (sig_type != _SSH_RSA and inner_sig_type != sig_type):
raise ValueError("Signature key type does not match")
signature, sig_rest = _get_sshstr(sig_rest)
_check_empty(sig_rest)
return SSHCertificate(
nonce,
public_key,
serial,
cctype,
key_id,
valid_principals,
valid_after,
valid_before,
critical_options,
extensions,
sig_type,
sig_key,
inner_sig_type,
signature,
tbs_cert_body,
orig_key_type,
cert_body,
)
else:
_check_empty(rest)
return public_key
def load_ssh_public_identity(
data: bytes,
) -> typing.Union[SSHCertificate, SSHPublicKeyTypes]:
return _load_ssh_public_identity(data)
def _parse_exts_opts(exts_opts: memoryview) -> typing.Dict[bytes, bytes]:
result: typing.Dict[bytes, bytes] = {}
last_name = None
while exts_opts:
name, exts_opts = _get_sshstr(exts_opts)
bname: bytes = bytes(name)
if bname in result:
raise ValueError("Duplicate name")
if last_name is not None and bname < last_name:
raise ValueError("Fields not lexically sorted")
value, exts_opts = _get_sshstr(exts_opts)
if len(value) > 0:
try:
value, extra = _get_sshstr(value)
except ValueError:
warnings.warn(
"This certificate has an incorrect encoding for critical "
"options or extensions. This will be an exception in "
"cryptography 42",
utils.DeprecatedIn41,
stacklevel=4,
)
else:
if len(extra) > 0:
raise ValueError("Unexpected extra data after value")
result[bname] = bytes(value)
last_name = bname
return result
def load_ssh_public_key(
data: bytes, backend: typing.Any = None
) -> SSHPublicKeyTypes:
cert_or_key = _load_ssh_public_identity(data, _legacy_dsa_allowed=True)
public_key: SSHPublicKeyTypes
if isinstance(cert_or_key, SSHCertificate):
public_key = cert_or_key.public_key()
else:
public_key = cert_or_key
if isinstance(public_key, dsa.DSAPublicKey):
warnings.warn(
"SSH DSA keys are deprecated and will be removed in a future "
"release.",
utils.DeprecatedIn40,
stacklevel=2,
)
return public_key
def serialize_ssh_public_key(public_key: SSHPublicKeyTypes) -> bytes:
"""One-line public key format for OpenSSH"""
if isinstance(public_key, dsa.DSAPublicKey):
warnings.warn(
"SSH DSA key support is deprecated and will be "
"removed in a future release",
utils.DeprecatedIn40,
stacklevel=4,
)
key_type = _get_ssh_key_type(public_key)
kformat = _lookup_kformat(key_type)
f_pub = _FragList()
f_pub.put_sshstr(key_type)
kformat.encode_public(public_key, f_pub)
pub = binascii.b2a_base64(f_pub.tobytes()).strip()
return b"".join([key_type, b" ", pub])
SSHCertPrivateKeyTypes = typing.Union[
ec.EllipticCurvePrivateKey,
rsa.RSAPrivateKey,
ed25519.Ed25519PrivateKey,
]
# This is an undocumented limit enforced in the openssh codebase for sshd and
# ssh-keygen, but it is undefined in the ssh certificates spec.
_SSHKEY_CERT_MAX_PRINCIPALS = 256
class SSHCertificateBuilder:
def __init__(
self,
_public_key: typing.Optional[SSHCertPublicKeyTypes] = None,
_serial: typing.Optional[int] = None,
_type: typing.Optional[SSHCertificateType] = None,
_key_id: typing.Optional[bytes] = None,
_valid_principals: typing.List[bytes] = [],
_valid_for_all_principals: bool = False,
_valid_before: typing.Optional[int] = None,
_valid_after: typing.Optional[int] = None,
_critical_options: typing.List[typing.Tuple[bytes, bytes]] = [],
_extensions: typing.List[typing.Tuple[bytes, bytes]] = [],
):
self._public_key = _public_key
self._serial = _serial
self._type = _type
self._key_id = _key_id
self._valid_principals = _valid_principals
self._valid_for_all_principals = _valid_for_all_principals
self._valid_before = _valid_before
self._valid_after = _valid_after
self._critical_options = _critical_options
self._extensions = _extensions
def public_key(
self, public_key: SSHCertPublicKeyTypes
) -> SSHCertificateBuilder:
if not isinstance(
public_key,
(
ec.EllipticCurvePublicKey,
rsa.RSAPublicKey,
ed25519.Ed25519PublicKey,
),
):
raise TypeError("Unsupported key type")
if self._public_key is not None:
raise ValueError("public_key already set")
return SSHCertificateBuilder(
_public_key=public_key,
_serial=self._serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def serial(self, serial: int) -> SSHCertificateBuilder:
if not isinstance(serial, int):
raise TypeError("serial must be an integer")
if not 0 <= serial < 2**64:
raise ValueError("serial must be between 0 and 2**64")
if self._serial is not None:
raise ValueError("serial already set")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def type(self, type: SSHCertificateType) -> SSHCertificateBuilder:
if not isinstance(type, SSHCertificateType):
raise TypeError("type must be an SSHCertificateType")
if self._type is not None:
raise ValueError("type already set")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def key_id(self, key_id: bytes) -> SSHCertificateBuilder:
if not isinstance(key_id, bytes):
raise TypeError("key_id must be bytes")
if self._key_id is not None:
raise ValueError("key_id already set")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=self._type,
_key_id=key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def valid_principals(
self, valid_principals: typing.List[bytes]
) -> SSHCertificateBuilder:
if self._valid_for_all_principals:
raise ValueError(
"Principals can't be set because the cert is valid "
"for all principals"
)
if (
not all(isinstance(x, bytes) for x in valid_principals)
or not valid_principals
):
raise TypeError(
"principals must be a list of bytes and can't be empty"
)
if self._valid_principals:
raise ValueError("valid_principals already set")
if len(valid_principals) > _SSHKEY_CERT_MAX_PRINCIPALS:
raise ValueError(
"Reached or exceeded the maximum number of valid_principals"
)
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def valid_for_all_principals(self):
if self._valid_principals:
raise ValueError(
"valid_principals already set, can't set "
"valid_for_all_principals"
)
if self._valid_for_all_principals:
raise ValueError("valid_for_all_principals already set")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=True,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def valid_before(
self, valid_before: typing.Union[int, float]
) -> SSHCertificateBuilder:
if not isinstance(valid_before, (int, float)):
raise TypeError("valid_before must be an int or float")
valid_before = int(valid_before)
if valid_before < 0 or valid_before >= 2**64:
raise ValueError("valid_before must [0, 2**64)")
if self._valid_before is not None:
raise ValueError("valid_before already set")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def valid_after(
self, valid_after: typing.Union[int, float]
) -> SSHCertificateBuilder:
if not isinstance(valid_after, (int, float)):
raise TypeError("valid_after must be an int or float")
valid_after = int(valid_after)
if valid_after < 0 or valid_after >= 2**64:
raise ValueError("valid_after must [0, 2**64)")
if self._valid_after is not None:
raise ValueError("valid_after already set")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions,
)
def add_critical_option(
self, name: bytes, value: bytes
) -> SSHCertificateBuilder:
if not isinstance(name, bytes) or not isinstance(value, bytes):
raise TypeError("name and value must be bytes")
# This is O(n**2)
if name in [name for name, _ in self._critical_options]:
raise ValueError("Duplicate critical option name")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options + [(name, value)],
_extensions=self._extensions,
)
def add_extension(
self, name: bytes, value: bytes
) -> SSHCertificateBuilder:
if not isinstance(name, bytes) or not isinstance(value, bytes):
raise TypeError("name and value must be bytes")
# This is O(n**2)
if name in [name for name, _ in self._extensions]:
raise ValueError("Duplicate extension name")
return SSHCertificateBuilder(
_public_key=self._public_key,
_serial=self._serial,
_type=self._type,
_key_id=self._key_id,
_valid_principals=self._valid_principals,
_valid_for_all_principals=self._valid_for_all_principals,
_valid_before=self._valid_before,
_valid_after=self._valid_after,
_critical_options=self._critical_options,
_extensions=self._extensions + [(name, value)],
)
def sign(self, private_key: SSHCertPrivateKeyTypes) -> SSHCertificate:
if not isinstance(
private_key,
(
ec.EllipticCurvePrivateKey,
rsa.RSAPrivateKey,
ed25519.Ed25519PrivateKey,
),
):
raise TypeError("Unsupported private key type")
if self._public_key is None:
raise ValueError("public_key must be set")
# Not required
serial = 0 if self._serial is None else self._serial
if self._type is None:
raise ValueError("type must be set")
# Not required
key_id = b"" if self._key_id is None else self._key_id
# A zero length list is valid, but means the certificate
# is valid for any principal of the specified type. We require
# the user to explicitly set valid_for_all_principals to get
# that behavior.
if not self._valid_principals and not self._valid_for_all_principals:
raise ValueError(
"valid_principals must be set if valid_for_all_principals "
"is False"
)
if self._valid_before is None:
raise ValueError("valid_before must be set")
if self._valid_after is None:
raise ValueError("valid_after must be set")
if self._valid_after > self._valid_before:
raise ValueError("valid_after must be earlier than valid_before")
# lexically sort our byte strings
self._critical_options.sort(key=lambda x: x[0])
self._extensions.sort(key=lambda x: x[0])
key_type = _get_ssh_key_type(self._public_key)
cert_prefix = key_type + _CERT_SUFFIX
# Marshal the bytes to be signed
nonce = os.urandom(32)
kformat = _lookup_kformat(key_type)
f = _FragList()
f.put_sshstr(cert_prefix)
f.put_sshstr(nonce)
kformat.encode_public(self._public_key, f)
f.put_u64(serial)
f.put_u32(self._type.value)
f.put_sshstr(key_id)
fprincipals = _FragList()
for p in self._valid_principals:
fprincipals.put_sshstr(p)
f.put_sshstr(fprincipals.tobytes())
f.put_u64(self._valid_after)
f.put_u64(self._valid_before)
fcrit = _FragList()
for name, value in self._critical_options:
fcrit.put_sshstr(name)
if len(value) > 0:
foptval = _FragList()
foptval.put_sshstr(value)
fcrit.put_sshstr(foptval.tobytes())
else:
fcrit.put_sshstr(value)
f.put_sshstr(fcrit.tobytes())
fext = _FragList()
for name, value in self._extensions:
fext.put_sshstr(name)
if len(value) > 0:
fextval = _FragList()
fextval.put_sshstr(value)
fext.put_sshstr(fextval.tobytes())
else:
fext.put_sshstr(value)
f.put_sshstr(fext.tobytes())
f.put_sshstr(b"") # RESERVED FIELD
# encode CA public key
ca_type = _get_ssh_key_type(private_key)
caformat = _lookup_kformat(ca_type)
caf = _FragList()
caf.put_sshstr(ca_type)
caformat.encode_public(private_key.public_key(), caf)
f.put_sshstr(caf.tobytes())
# Sigs according to the rules defined for the CA's public key
# (RFC4253 section 6.6 for ssh-rsa, RFC5656 for ECDSA,
# and RFC8032 for Ed25519).
if isinstance(private_key, ed25519.Ed25519PrivateKey):
signature = private_key.sign(f.tobytes())
fsig = _FragList()
fsig.put_sshstr(ca_type)
fsig.put_sshstr(signature)
f.put_sshstr(fsig.tobytes())
elif isinstance(private_key, ec.EllipticCurvePrivateKey):
hash_alg = _get_ec_hash_alg(private_key.curve)
signature = private_key.sign(f.tobytes(), ec.ECDSA(hash_alg))
r, s = asym_utils.decode_dss_signature(signature)
fsig = _FragList()
fsig.put_sshstr(ca_type)
fsigblob = _FragList()
fsigblob.put_mpint(r)
fsigblob.put_mpint(s)
fsig.put_sshstr(fsigblob.tobytes())
f.put_sshstr(fsig.tobytes())
else:
assert isinstance(private_key, rsa.RSAPrivateKey)
# Just like Golang, we're going to use SHA512 for RSA
# https://cs.opensource.google/go/x/crypto/+/refs/tags/
# v0.4.0:ssh/certs.go;l=445
# RFC 8332 defines SHA256 and 512 as options
fsig = _FragList()
fsig.put_sshstr(_SSH_RSA_SHA512)
signature = private_key.sign(
f.tobytes(), padding.PKCS1v15(), hashes.SHA512()
)
fsig.put_sshstr(signature)
f.put_sshstr(fsig.tobytes())
cert_data = binascii.b2a_base64(f.tobytes()).strip()
# load_ssh_public_identity returns a union, but this is
# guaranteed to be an SSHCertificate, so we cast to make
# mypy happy.
return typing.cast(
SSHCertificate,
load_ssh_public_identity(b"".join([cert_prefix, b" ", cert_data])),
)
Hacked By AnonymousFox1.0, Coded By AnonymousFox