Hacked By AnonymousFox
�
�܋f
� � � d Z ddlmZmZmZmZmZ ddlmZm Z g d�Z
eefZdd�Z
ee
d�� � dd �� � Z ee
d�� � dd
�� � Z e d� � dd�� � Z e d� � dd
�� � ZdS )z*
Discrete Fourier Transforms - helper.py
� )�integer�empty�arange�asarray�roll)�array_function_dispatch�
set_module)�fftshift� ifftshift�fftfreq�rfftfreqNc � � | fS �N� )�x�axess �G/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/fft/helper.py�_fftshift_dispatcherr s � �
�4�K� z numpy.fft)�modulec � � � t � � � � |�3t t � j � � � � }d� � j D � � }n4t |t � � r� j | dz }n� fd�|D � � }t � ||� � S )ad
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., ..., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
Nc � � g | ]}|d z ��S �� r ��.0�dims r �
<listcomp>zfftshift.<locals>.<listcomp>C s � �-�-�-�c����-�-�-r r c �0 �� g | ]}�j | d z ��S r ��shape�r �axr s �r r zfftshift.<locals>.<listcomp>G s$ �� �1�1�1�b������!�1�1�1r �r �tuple�range�ndimr! �
isinstance�
integer_typesr �r r �shifts ` r r
r
s� �� �Z ��
�
�A��|��U�1�6�]�]�#�#��-�-�Q�W�-�-�-��� �D�-� (� (� 2����
��"���1�1�1�1�D�1�1�1����5�$���r c � � � t � � � � |�3t t � j � � � � }d� � j D � � }n5t |t � � r� j | dz }n� fd�|D � � }t � ||� � S )a/
The inverse of `fftshift`. Although identical for even-length `x`, the
functions differ by one sample for odd-length `x`.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
Nc � � g | ]}|d z �� S r r r s r r zifftshift.<locals>.<listcomp>r s � �0�0�0��3�!�8��0�0�0r r c �2 �� g | ]}�j | d z ��S r r r"