Hacked By AnonymousFox
�
�܋f�� � � � d Z ddlZddlmZ ddlmZ ddlm Z
ddlmZ g d�Z
e
j Zd� Zd � Z ej ddg� � Z ej dg� � Z ej dg� � Z ej dd
g� � Zd� Zd� Zd
� Zd� Zd� Zd� Zd� Zd'd�Zd(d�Zdg dddfd�Z d)d�Z!d� Z"d� Z#d� Z$d� Z%d� Z&d� Z'd� Z(d*d �Z)d!� Z*d"� Z+d#� Z,d$� Z- G d%� d&e� � Z.dS )+a�
==================================================
Laguerre Series (:mod:`numpy.polynomial.laguerre`)
==================================================
This module provides a number of objects (mostly functions) useful for
dealing with Laguerre series, including a `Laguerre` class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).
Classes
-------
.. autosummary::
:toctree: generated/
Laguerre
Constants
---------
.. autosummary::
:toctree: generated/
lagdomain
lagzero
lagone
lagx
Arithmetic
----------
.. autosummary::
:toctree: generated/
lagadd
lagsub
lagmulx
lagmul
lagdiv
lagpow
lagval
lagval2d
lagval3d
laggrid2d
laggrid3d
Calculus
--------
.. autosummary::
:toctree: generated/
lagder
lagint
Misc Functions
--------------
.. autosummary::
:toctree: generated/
lagfromroots
lagroots
lagvander
lagvander2d
lagvander3d
laggauss
lagweight
lagcompanion
lagfit
lagtrim
lagline
lag2poly
poly2lag
See also
--------
`numpy.polynomial`
� N)�normalize_axis_index� )� polyutils)�ABCPolyBase)�lagzero�lagone�lagx� lagdomain�lagline�lagadd�lagsub�lagmulx�lagmul�lagdiv�lagpow�lagval�lagder�lagint�lag2poly�poly2lag�lagfromroots� lagvander�lagfit�lagtrim�lagroots�Laguerre�lagval2d�lagval3d� laggrid2d� laggrid3d�lagvander2d�lagvander3d�lagcompanion�laggauss� lagweightc � � t j | g� � \ } d}| ddd� D ]}t t |� � |� � }� |S )a�
poly2lag(pol)
Convert a polynomial to a Laguerre series.
Convert an array representing the coefficients of a polynomial (relative
to the "standard" basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Laguerre series, ordered
from lowest to highest degree.
Parameters
----------
pol : array_like
1-D array containing the polynomial coefficients
Returns
-------
c : ndarray
1-D array containing the coefficients of the equivalent Laguerre
series.
See Also
--------
lag2poly
Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.
Examples
--------
>>> from numpy.polynomial.laguerre import poly2lag
>>> poly2lag(np.arange(4))
array([ 23., -63., 58., -18.])
r N���)�pu� as_seriesr r )�pol�res�ps �P/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/laguerre.pyr r ` sR � �L
�L�#����E�S�
�C�
���2��Y� &� &���W�S�\�\�1�%�%����J� c
� � ddl m}m}m} t j | g� � \ } t
| � � }|dk r| S | d }| d }t |dz
dd� � D ]M}|} || |dz
||dz
z |z � � } || |d|z dz
|z ||� � � � |z � � }�N || || ||� � � � � � S )a�
Convert a Laguerre series to a polynomial.
Convert an array representing the coefficients of a Laguerre series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.
Parameters
----------
c : array_like
1-D array containing the Laguerre series coefficients, ordered
from lowest order term to highest.
Returns
-------
pol : ndarray
1-D array containing the coefficients of the equivalent polynomial
(relative to the "standard" basis) ordered from lowest order term
to highest.
See Also
--------
poly2lag
Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.
Examples
--------
>>> from numpy.polynomial.laguerre import lag2poly
>>> lag2poly([ 23., -63., 58., -18.])
array([0., 1., 2., 3.])
r )�polyadd�polysub�polymulx���r'