Hacked By AnonymousFox
�
�܋fL� � �� � d Z ddlZddlmZ ddlmZ ddlm Z
ddlmZ g d�Z
e
j Zd� Zd � Zd
� Zd� Zd� Zd
� Zd� Zd� Z ej ddg� � Z ej dg� � Z ej dg� � Z ej ddg� � Zd� Zd� Zd� Zd� Z d� Z!d� Z"d� Z#d1d�Z$d2d�Z%dg dddfd�Z&d3d�Z'd� Z(d� Z)d � Z*d!� Z+d"� Z,d#� Z-d$� Z.d4d&�Z/d'� Z0d(� Z1d5d*�Z2d+� Z3d,� Z4d-� Z5d.� Z6 G d/� d0e� � Z7dS )6a�
====================================================
Chebyshev Series (:mod:`numpy.polynomial.chebyshev`)
====================================================
This module provides a number of objects (mostly functions) useful for
dealing with Chebyshev series, including a `Chebyshev` class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).
Classes
-------
.. autosummary::
:toctree: generated/
Chebyshev
Constants
---------
.. autosummary::
:toctree: generated/
chebdomain
chebzero
chebone
chebx
Arithmetic
----------
.. autosummary::
:toctree: generated/
chebadd
chebsub
chebmulx
chebmul
chebdiv
chebpow
chebval
chebval2d
chebval3d
chebgrid2d
chebgrid3d
Calculus
--------
.. autosummary::
:toctree: generated/
chebder
chebint
Misc Functions
--------------
.. autosummary::
:toctree: generated/
chebfromroots
chebroots
chebvander
chebvander2d
chebvander3d
chebgauss
chebweight
chebcompanion
chebfit
chebpts1
chebpts2
chebtrim
chebline
cheb2poly
poly2cheb
chebinterpolate
See also
--------
`numpy.polynomial`
Notes
-----
The implementations of multiplication, division, integration, and
differentiation use the algebraic identities [1]_:
.. math::
T_n(x) = \frac{z^n + z^{-n}}{2} \\
z\frac{dx}{dz} = \frac{z - z^{-1}}{2}.
where
.. math:: x = \frac{z + z^{-1}}{2}.
These identities allow a Chebyshev series to be expressed as a finite,
symmetric Laurent series. In this module, this sort of Laurent series
is referred to as a "z-series."
References
----------
.. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
(https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
� N)�normalize_axis_index� )� polyutils)�ABCPolyBase)"�chebzero�chebone�chebx�
chebdomain�chebline�chebadd�chebsub�chebmulx�chebmul�chebdiv�chebpow�chebval�chebder�chebint� cheb2poly� poly2cheb�
chebfromroots�
chebvander�chebfit�chebtrim� chebroots�chebpts1�chebpts2� Chebyshev� chebval2d� chebval3d�
chebgrid2d�
chebgrid3d�chebvander2d�chebvander3d�
chebcompanion� chebgauss�
chebweight�chebinterpolatec � � | j }t j d|z dz
| j �� � }| dz ||dz
d�<