Hacked By AnonymousFox
�
�܋f�: � � � d Z ddlmc mZ ddlmc mZ ddlmZm Z ddl
mZ ddlm
Z
g d�Z ej d� � Zd� Zd � Zd
� Zd� Zd� Z ee� � d
� � � Z ee� � d� � � Z ee� � d� � � Zd� Z ee� � d� � � Z ee� � d� � � Zd� Z ee� � d� � � Z ee� � d� � � Z ee� � d� � � Z ee� � d� � � ZdS )a�
Wrapper functions to more user-friendly calling of certain math functions
whose output data-type is different than the input data-type in certain
domains of the input.
For example, for functions like `log` with branch cuts, the versions in this
module provide the mathematically valid answers in the complex plane::
>>> import math
>>> np.emath.log(-math.exp(1)) == (1+1j*math.pi)
True
Similarly, `sqrt`, other base logarithms, `power` and trig functions are
correctly handled. See their respective docstrings for specific examples.
Functions
---------
.. autosummary::
:toctree: generated/
sqrt
log
log2
logn
log10
power
arccos
arcsin
arctanh
� N)�asarray�any)�array_function_dispatch)�isreal) �sqrt�log�log2�logn�log10�power�arccos�arcsin�arctanhg @c �6 � t | j j t j t j t j t j t j t j f� � r| �
t j � � S | �
t j � � S )a_ Convert its input `arr` to a complex array.
The input is returned as a complex array of the smallest type that will fit
the original data: types like single, byte, short, etc. become csingle,
while others become cdouble.
A copy of the input is always made.
Parameters
----------
arr : array
Returns
-------
array
An array with the same input data as the input but in complex form.
Examples
--------
First, consider an input of type short:
>>> a = np.array([1,2,3],np.short)
>>> ac = np.lib.scimath._tocomplex(a); ac
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> ac.dtype
dtype('complex64')
If the input is of type double, the output is correspondingly of the
complex double type as well:
>>> b = np.array([1,2,3],np.double)
>>> bc = np.lib.scimath._tocomplex(b); bc
array([1.+0.j, 2.+0.j, 3.+0.j])
>>> bc.dtype
dtype('complex128')
Note that even if the input was complex to begin with, a copy is still
made, since the astype() method always copies:
>>> c = np.array([1,2,3],np.csingle)
>>> cc = np.lib.scimath._tocomplex(c); cc
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> c *= 2; c
array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
>>> cc
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
)�
issubclass�dtype�type�nt�single�byte�short�ubyte�ushort�csingle�astype�cdouble)�arrs �H/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/scimath.py�
_tocomplexr 1 sc � �p �#�)�.�2�9�b�g�r�x���#%�9�b�j�#:� ;� ;� &��z�z�"�*�%�%�%��z�z�"�*�%�%�%� c � � t | � � } t t | � � | dk z � � rt | � � } | S )a� Convert `x` to complex if it has real, negative components.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> np.lib.scimath._fix_real_lt_zero([1,2])
array([1, 2])
>>> np.lib.scimath._fix_real_lt_zero([-1,2])
array([-1.+0.j, 2.+0.j])
r )r r r r ��xs r �_fix_real_lt_zeror$ p s>