Hacked By AnonymousFox
import pytest
import numpy as np
from numpy.core import (
array, arange, atleast_1d, atleast_2d, atleast_3d, block, vstack, hstack,
newaxis, concatenate, stack
)
from numpy.core.shape_base import (_block_dispatcher, _block_setup,
_block_concatenate, _block_slicing)
from numpy.testing import (
assert_, assert_raises, assert_array_equal, assert_equal,
assert_raises_regex, assert_warns, IS_PYPY
)
class TestAtleast1d:
def test_0D_array(self):
a = array(1)
b = array(2)
res = [atleast_1d(a), atleast_1d(b)]
desired = [array([1]), array([2])]
assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1, 2])
b = array([2, 3])
res = [atleast_1d(a), atleast_1d(b)]
desired = [array([1, 2]), array([2, 3])]
assert_array_equal(res, desired)
def test_2D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
res = [atleast_1d(a), atleast_1d(b)]
desired = [a, b]
assert_array_equal(res, desired)
def test_3D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
a = array([a, a])
b = array([b, b])
res = [atleast_1d(a), atleast_1d(b)]
desired = [a, b]
assert_array_equal(res, desired)
def test_r1array(self):
""" Test to make sure equivalent Travis O's r1array function
"""
assert_(atleast_1d(3).shape == (1,))
assert_(atleast_1d(3j).shape == (1,))
assert_(atleast_1d(3.0).shape == (1,))
assert_(atleast_1d([[2, 3], [4, 5]]).shape == (2, 2))
class TestAtleast2d:
def test_0D_array(self):
a = array(1)
b = array(2)
res = [atleast_2d(a), atleast_2d(b)]
desired = [array([[1]]), array([[2]])]
assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1, 2])
b = array([2, 3])
res = [atleast_2d(a), atleast_2d(b)]
desired = [array([[1, 2]]), array([[2, 3]])]
assert_array_equal(res, desired)
def test_2D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
res = [atleast_2d(a), atleast_2d(b)]
desired = [a, b]
assert_array_equal(res, desired)
def test_3D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
a = array([a, a])
b = array([b, b])
res = [atleast_2d(a), atleast_2d(b)]
desired = [a, b]
assert_array_equal(res, desired)
def test_r2array(self):
""" Test to make sure equivalent Travis O's r2array function
"""
assert_(atleast_2d(3).shape == (1, 1))
assert_(atleast_2d([3j, 1]).shape == (1, 2))
assert_(atleast_2d([[[3, 1], [4, 5]], [[3, 5], [1, 2]]]).shape == (2, 2, 2))
class TestAtleast3d:
def test_0D_array(self):
a = array(1)
b = array(2)
res = [atleast_3d(a), atleast_3d(b)]
desired = [array([[[1]]]), array([[[2]]])]
assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1, 2])
b = array([2, 3])
res = [atleast_3d(a), atleast_3d(b)]
desired = [array([[[1], [2]]]), array([[[2], [3]]])]
assert_array_equal(res, desired)
def test_2D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
res = [atleast_3d(a), atleast_3d(b)]
desired = [a[:,:, newaxis], b[:,:, newaxis]]
assert_array_equal(res, desired)
def test_3D_array(self):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
a = array([a, a])
b = array([b, b])
res = [atleast_3d(a), atleast_3d(b)]
desired = [a, b]
assert_array_equal(res, desired)
class TestHstack:
def test_non_iterable(self):
assert_raises(TypeError, hstack, 1)
def test_empty_input(self):
assert_raises(ValueError, hstack, ())
def test_0D_array(self):
a = array(1)
b = array(2)
res = hstack([a, b])
desired = array([1, 2])
assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1])
b = array([2])
res = hstack([a, b])
desired = array([1, 2])
assert_array_equal(res, desired)
def test_2D_array(self):
a = array([[1], [2]])
b = array([[1], [2]])
res = hstack([a, b])
desired = array([[1, 1], [2, 2]])
assert_array_equal(res, desired)
def test_generator(self):
with pytest.raises(TypeError, match="arrays to stack must be"):
hstack((np.arange(3) for _ in range(2)))
with pytest.raises(TypeError, match="arrays to stack must be"):
hstack(map(lambda x: x, np.ones((3, 2))))
def test_casting_and_dtype(self):
a = np.array([1, 2, 3])
b = np.array([2.5, 3.5, 4.5])
res = np.hstack((a, b), casting="unsafe", dtype=np.int64)
expected_res = np.array([1, 2, 3, 2, 3, 4])
assert_array_equal(res, expected_res)
def test_casting_and_dtype_type_error(self):
a = np.array([1, 2, 3])
b = np.array([2.5, 3.5, 4.5])
with pytest.raises(TypeError):
hstack((a, b), casting="safe", dtype=np.int64)
class TestVstack:
def test_non_iterable(self):
assert_raises(TypeError, vstack, 1)
def test_empty_input(self):
assert_raises(ValueError, vstack, ())
def test_0D_array(self):
a = array(1)
b = array(2)
res = vstack([a, b])
desired = array([[1], [2]])
assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1])
b = array([2])
res = vstack([a, b])
desired = array([[1], [2]])
assert_array_equal(res, desired)
def test_2D_array(self):
a = array([[1], [2]])
b = array([[1], [2]])
res = vstack([a, b])
desired = array([[1], [2], [1], [2]])
assert_array_equal(res, desired)
def test_2D_array2(self):
a = array([1, 2])
b = array([1, 2])
res = vstack([a, b])
desired = array([[1, 2], [1, 2]])
assert_array_equal(res, desired)
def test_generator(self):
with pytest.raises(TypeError, match="arrays to stack must be"):
vstack((np.arange(3) for _ in range(2)))
def test_casting_and_dtype(self):
a = np.array([1, 2, 3])
b = np.array([2.5, 3.5, 4.5])
res = np.vstack((a, b), casting="unsafe", dtype=np.int64)
expected_res = np.array([[1, 2, 3], [2, 3, 4]])
assert_array_equal(res, expected_res)
def test_casting_and_dtype_type_error(self):
a = np.array([1, 2, 3])
b = np.array([2.5, 3.5, 4.5])
with pytest.raises(TypeError):
vstack((a, b), casting="safe", dtype=np.int64)
class TestConcatenate:
def test_returns_copy(self):
a = np.eye(3)
b = np.concatenate([a])
b[0, 0] = 2
assert b[0, 0] != a[0, 0]
def test_exceptions(self):
# test axis must be in bounds
for ndim in [1, 2, 3]:
a = np.ones((1,)*ndim)
np.concatenate((a, a), axis=0) # OK
assert_raises(np.AxisError, np.concatenate, (a, a), axis=ndim)
assert_raises(np.AxisError, np.concatenate, (a, a), axis=-(ndim + 1))
# Scalars cannot be concatenated
assert_raises(ValueError, concatenate, (0,))
assert_raises(ValueError, concatenate, (np.array(0),))
# dimensionality must match
assert_raises_regex(
ValueError,
r"all the input arrays must have same number of dimensions, but "
r"the array at index 0 has 1 dimension\(s\) and the array at "
r"index 1 has 2 dimension\(s\)",
np.concatenate, (np.zeros(1), np.zeros((1, 1))))
# test shapes must match except for concatenation axis
a = np.ones((1, 2, 3))
b = np.ones((2, 2, 3))
axis = list(range(3))
for i in range(3):
np.concatenate((a, b), axis=axis[0]) # OK
assert_raises_regex(
ValueError,
"all the input array dimensions except for the concatenation axis "
"must match exactly, but along dimension {}, the array at "
"index 0 has size 1 and the array at index 1 has size 2"
.format(i),
np.concatenate, (a, b), axis=axis[1])
assert_raises(ValueError, np.concatenate, (a, b), axis=axis[2])
a = np.moveaxis(a, -1, 0)
b = np.moveaxis(b, -1, 0)
axis.append(axis.pop(0))
# No arrays to concatenate raises ValueError
assert_raises(ValueError, concatenate, ())
def test_concatenate_axis_None(self):
a = np.arange(4, dtype=np.float64).reshape((2, 2))
b = list(range(3))
c = ['x']
r = np.concatenate((a, a), axis=None)
assert_equal(r.dtype, a.dtype)
assert_equal(r.ndim, 1)
r = np.concatenate((a, b), axis=None)
assert_equal(r.size, a.size + len(b))
assert_equal(r.dtype, a.dtype)
r = np.concatenate((a, b, c), axis=None, dtype="U")
d = array(['0.0', '1.0', '2.0', '3.0',
'0', '1', '2', 'x'])
assert_array_equal(r, d)
out = np.zeros(a.size + len(b))
r = np.concatenate((a, b), axis=None)
rout = np.concatenate((a, b), axis=None, out=out)
assert_(out is rout)
assert_equal(r, rout)
def test_large_concatenate_axis_None(self):
# When no axis is given, concatenate uses flattened versions.
# This also had a bug with many arrays (see gh-5979).
x = np.arange(1, 100)
r = np.concatenate(x, None)
assert_array_equal(x, r)
# This should probably be deprecated:
r = np.concatenate(x, 100) # axis is >= MAXDIMS
assert_array_equal(x, r)
def test_concatenate(self):
# Test concatenate function
# One sequence returns unmodified (but as array)
r4 = list(range(4))
assert_array_equal(concatenate((r4,)), r4)
# Any sequence
assert_array_equal(concatenate((tuple(r4),)), r4)
assert_array_equal(concatenate((array(r4),)), r4)
# 1D default concatenation
r3 = list(range(3))
assert_array_equal(concatenate((r4, r3)), r4 + r3)
# Mixed sequence types
assert_array_equal(concatenate((tuple(r4), r3)), r4 + r3)
assert_array_equal(concatenate((array(r4), r3)), r4 + r3)
# Explicit axis specification
assert_array_equal(concatenate((r4, r3), 0), r4 + r3)
# Including negative
assert_array_equal(concatenate((r4, r3), -1), r4 + r3)
# 2D
a23 = array([[10, 11, 12], [13, 14, 15]])
a13 = array([[0, 1, 2]])
res = array([[10, 11, 12], [13, 14, 15], [0, 1, 2]])
assert_array_equal(concatenate((a23, a13)), res)
assert_array_equal(concatenate((a23, a13), 0), res)
assert_array_equal(concatenate((a23.T, a13.T), 1), res.T)
assert_array_equal(concatenate((a23.T, a13.T), -1), res.T)
# Arrays much match shape
assert_raises(ValueError, concatenate, (a23.T, a13.T), 0)
# 3D
res = arange(2 * 3 * 7).reshape((2, 3, 7))
a0 = res[..., :4]
a1 = res[..., 4:6]
a2 = res[..., 6:]
assert_array_equal(concatenate((a0, a1, a2), 2), res)
assert_array_equal(concatenate((a0, a1, a2), -1), res)
assert_array_equal(concatenate((a0.T, a1.T, a2.T), 0), res.T)
out = res.copy()
rout = concatenate((a0, a1, a2), 2, out=out)
assert_(out is rout)
assert_equal(res, rout)
@pytest.mark.skipif(IS_PYPY, reason="PYPY handles sq_concat, nb_add differently than cpython")
def test_operator_concat(self):
import operator
a = array([1, 2])
b = array([3, 4])
n = [1,2]
res = array([1, 2, 3, 4])
assert_raises(TypeError, operator.concat, a, b)
assert_raises(TypeError, operator.concat, a, n)
assert_raises(TypeError, operator.concat, n, a)
assert_raises(TypeError, operator.concat, a, 1)
assert_raises(TypeError, operator.concat, 1, a)
def test_bad_out_shape(self):
a = array([1, 2])
b = array([3, 4])
assert_raises(ValueError, concatenate, (a, b), out=np.empty(5))
assert_raises(ValueError, concatenate, (a, b), out=np.empty((4,1)))
assert_raises(ValueError, concatenate, (a, b), out=np.empty((1,4)))
concatenate((a, b), out=np.empty(4))
@pytest.mark.parametrize("axis", [None, 0])
@pytest.mark.parametrize("out_dtype", ["c8", "f4", "f8", ">f8", "i8", "S4"])
@pytest.mark.parametrize("casting",
['no', 'equiv', 'safe', 'same_kind', 'unsafe'])
def test_out_and_dtype(self, axis, out_dtype, casting):
# Compare usage of `out=out` with `dtype=out.dtype`
out = np.empty(4, dtype=out_dtype)
to_concat = (array([1.1, 2.2]), array([3.3, 4.4]))
if not np.can_cast(to_concat[0], out_dtype, casting=casting):
with assert_raises(TypeError):
concatenate(to_concat, out=out, axis=axis, casting=casting)
with assert_raises(TypeError):
concatenate(to_concat, dtype=out.dtype,
axis=axis, casting=casting)
else:
res_out = concatenate(to_concat, out=out,
axis=axis, casting=casting)
res_dtype = concatenate(to_concat, dtype=out.dtype,
axis=axis, casting=casting)
assert res_out is out
assert_array_equal(out, res_dtype)
assert res_dtype.dtype == out_dtype
with assert_raises(TypeError):
concatenate(to_concat, out=out, dtype=out_dtype, axis=axis)
@pytest.mark.parametrize("axis", [None, 0])
@pytest.mark.parametrize("string_dt", ["S", "U", "S0", "U0"])
@pytest.mark.parametrize("arrs",
[([0.],), ([0.], [1]), ([0], ["string"], [1.])])
def test_dtype_with_promotion(self, arrs, string_dt, axis):
# Note that U0 and S0 should be deprecated eventually and changed to
# actually give the empty string result (together with `np.array`)
res = np.concatenate(arrs, axis=axis, dtype=string_dt, casting="unsafe")
# The actual dtype should be identical to a cast (of a double array):
assert res.dtype == np.array(1.).astype(string_dt).dtype
@pytest.mark.parametrize("axis", [None, 0])
def test_string_dtype_does_not_inspect(self, axis):
with pytest.raises(TypeError):
np.concatenate(([None], [1]), dtype="S", axis=axis)
with pytest.raises(TypeError):
np.concatenate(([None], [1]), dtype="U", axis=axis)
@pytest.mark.parametrize("axis", [None, 0])
def test_subarray_error(self, axis):
with pytest.raises(TypeError, match=".*subarray dtype"):
np.concatenate(([1], [1]), dtype="(2,)i", axis=axis)
def test_stack():
# non-iterable input
assert_raises(TypeError, stack, 1)
# 0d input
for input_ in [(1, 2, 3),
[np.int32(1), np.int32(2), np.int32(3)],
[np.array(1), np.array(2), np.array(3)]]:
assert_array_equal(stack(input_), [1, 2, 3])
# 1d input examples
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
r1 = array([[1, 2, 3], [4, 5, 6]])
assert_array_equal(np.stack((a, b)), r1)
assert_array_equal(np.stack((a, b), axis=1), r1.T)
# all input types
assert_array_equal(np.stack(list([a, b])), r1)
assert_array_equal(np.stack(array([a, b])), r1)
# all shapes for 1d input
arrays = [np.random.randn(3) for _ in range(10)]
axes = [0, 1, -1, -2]
expected_shapes = [(10, 3), (3, 10), (3, 10), (10, 3)]
for axis, expected_shape in zip(axes, expected_shapes):
assert_equal(np.stack(arrays, axis).shape, expected_shape)
assert_raises_regex(np.AxisError, 'out of bounds', stack, arrays, axis=2)
assert_raises_regex(np.AxisError, 'out of bounds', stack, arrays, axis=-3)
# all shapes for 2d input
arrays = [np.random.randn(3, 4) for _ in range(10)]
axes = [0, 1, 2, -1, -2, -3]
expected_shapes = [(10, 3, 4), (3, 10, 4), (3, 4, 10),
(3, 4, 10), (3, 10, 4), (10, 3, 4)]
for axis, expected_shape in zip(axes, expected_shapes):
assert_equal(np.stack(arrays, axis).shape, expected_shape)
# empty arrays
assert_(stack([[], [], []]).shape == (3, 0))
assert_(stack([[], [], []], axis=1).shape == (0, 3))
# out
out = np.zeros_like(r1)
np.stack((a, b), out=out)
assert_array_equal(out, r1)
# edge cases
assert_raises_regex(ValueError, 'need at least one array', stack, [])
assert_raises_regex(ValueError, 'must have the same shape',
stack, [1, np.arange(3)])
assert_raises_regex(ValueError, 'must have the same shape',
stack, [np.arange(3), 1])
assert_raises_regex(ValueError, 'must have the same shape',
stack, [np.arange(3), 1], axis=1)
assert_raises_regex(ValueError, 'must have the same shape',
stack, [np.zeros((3, 3)), np.zeros(3)], axis=1)
assert_raises_regex(ValueError, 'must have the same shape',
stack, [np.arange(2), np.arange(3)])
# do not accept generators
with pytest.raises(TypeError, match="arrays to stack must be"):
stack((x for x in range(3)))
#casting and dtype test
a = np.array([1, 2, 3])
b = np.array([2.5, 3.5, 4.5])
res = np.stack((a, b), axis=1, casting="unsafe", dtype=np.int64)
expected_res = np.array([[1, 2], [2, 3], [3, 4]])
assert_array_equal(res, expected_res)
#casting and dtype with TypeError
with assert_raises(TypeError):
stack((a, b), dtype=np.int64, axis=1, casting="safe")
@pytest.mark.parametrize("axis", [0])
@pytest.mark.parametrize("out_dtype", ["c8", "f4", "f8", ">f8", "i8"])
@pytest.mark.parametrize("casting",
['no', 'equiv', 'safe', 'same_kind', 'unsafe'])
def test_stack_out_and_dtype(axis, out_dtype, casting):
to_concat = (array([1, 2]), array([3, 4]))
res = array([[1, 2], [3, 4]])
out = np.zeros_like(res)
if not np.can_cast(to_concat[0], out_dtype, casting=casting):
with assert_raises(TypeError):
stack(to_concat, dtype=out_dtype,
axis=axis, casting=casting)
else:
res_out = stack(to_concat, out=out,
axis=axis, casting=casting)
res_dtype = stack(to_concat, dtype=out_dtype,
axis=axis, casting=casting)
assert res_out is out
assert_array_equal(out, res_dtype)
assert res_dtype.dtype == out_dtype
with assert_raises(TypeError):
stack(to_concat, out=out, dtype=out_dtype, axis=axis)
class TestBlock:
@pytest.fixture(params=['block', 'force_concatenate', 'force_slicing'])
def block(self, request):
# blocking small arrays and large arrays go through different paths.
# the algorithm is triggered depending on the number of element
# copies required.
# We define a test fixture that forces most tests to go through
# both code paths.
# Ultimately, this should be removed if a single algorithm is found
# to be faster for both small and large arrays.
def _block_force_concatenate(arrays):
arrays, list_ndim, result_ndim, _ = _block_setup(arrays)
return _block_concatenate(arrays, list_ndim, result_ndim)
def _block_force_slicing(arrays):
arrays, list_ndim, result_ndim, _ = _block_setup(arrays)
return _block_slicing(arrays, list_ndim, result_ndim)
if request.param == 'force_concatenate':
return _block_force_concatenate
elif request.param == 'force_slicing':
return _block_force_slicing
elif request.param == 'block':
return block
else:
raise ValueError('Unknown blocking request. There is a typo in the tests.')
def test_returns_copy(self, block):
a = np.eye(3)
b = block(a)
b[0, 0] = 2
assert b[0, 0] != a[0, 0]
def test_block_total_size_estimate(self, block):
_, _, _, total_size = _block_setup([1])
assert total_size == 1
_, _, _, total_size = _block_setup([[1]])
assert total_size == 1
_, _, _, total_size = _block_setup([[1, 1]])
assert total_size == 2
_, _, _, total_size = _block_setup([[1], [1]])
assert total_size == 2
_, _, _, total_size = _block_setup([[1, 2], [3, 4]])
assert total_size == 4
def test_block_simple_row_wise(self, block):
a_2d = np.ones((2, 2))
b_2d = 2 * a_2d
desired = np.array([[1, 1, 2, 2],
[1, 1, 2, 2]])
result = block([a_2d, b_2d])
assert_equal(desired, result)
def test_block_simple_column_wise(self, block):
a_2d = np.ones((2, 2))
b_2d = 2 * a_2d
expected = np.array([[1, 1],
[1, 1],
[2, 2],
[2, 2]])
result = block([[a_2d], [b_2d]])
assert_equal(expected, result)
def test_block_with_1d_arrays_row_wise(self, block):
# # # 1-D vectors are treated as row arrays
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
expected = np.array([1, 2, 3, 2, 3, 4])
result = block([a, b])
assert_equal(expected, result)
def test_block_with_1d_arrays_multiple_rows(self, block):
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
expected = np.array([[1, 2, 3, 2, 3, 4],
[1, 2, 3, 2, 3, 4]])
result = block([[a, b], [a, b]])
assert_equal(expected, result)
def test_block_with_1d_arrays_column_wise(self, block):
# # # 1-D vectors are treated as row arrays
a_1d = np.array([1, 2, 3])
b_1d = np.array([2, 3, 4])
expected = np.array([[1, 2, 3],
[2, 3, 4]])
result = block([[a_1d], [b_1d]])
assert_equal(expected, result)
def test_block_mixed_1d_and_2d(self, block):
a_2d = np.ones((2, 2))
b_1d = np.array([2, 2])
result = block([[a_2d], [b_1d]])
expected = np.array([[1, 1],
[1, 1],
[2, 2]])
assert_equal(expected, result)
def test_block_complicated(self, block):
# a bit more complicated
one_2d = np.array([[1, 1, 1]])
two_2d = np.array([[2, 2, 2]])
three_2d = np.array([[3, 3, 3, 3, 3, 3]])
four_1d = np.array([4, 4, 4, 4, 4, 4])
five_0d = np.array(5)
six_1d = np.array([6, 6, 6, 6, 6])
zero_2d = np.zeros((2, 6))
expected = np.array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4],
[5, 6, 6, 6, 6, 6],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
result = block([[one_2d, two_2d],
[three_2d],
[four_1d],
[five_0d, six_1d],
[zero_2d]])
assert_equal(result, expected)
def test_nested(self, block):
one = np.array([1, 1, 1])
two = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]])
three = np.array([3, 3, 3])
four = np.array([4, 4, 4])
five = np.array(5)
six = np.array([6, 6, 6, 6, 6])
zero = np.zeros((2, 6))
result = block([
[
block([
[one],
[three],
[four]
]),
two
],
[five, six],
[zero]
])
expected = np.array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 2, 2, 2],
[4, 4, 4, 2, 2, 2],
[5, 6, 6, 6, 6, 6],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
assert_equal(result, expected)
def test_3d(self, block):
a000 = np.ones((2, 2, 2), int) * 1
a100 = np.ones((3, 2, 2), int) * 2
a010 = np.ones((2, 3, 2), int) * 3
a001 = np.ones((2, 2, 3), int) * 4
a011 = np.ones((2, 3, 3), int) * 5
a101 = np.ones((3, 2, 3), int) * 6
a110 = np.ones((3, 3, 2), int) * 7
a111 = np.ones((3, 3, 3), int) * 8
result = block([
[
[a000, a001],
[a010, a011],
],
[
[a100, a101],
[a110, a111],
]
])
expected = array([[[1, 1, 4, 4, 4],
[1, 1, 4, 4, 4],
[3, 3, 5, 5, 5],
[3, 3, 5, 5, 5],
[3, 3, 5, 5, 5]],
[[1, 1, 4, 4, 4],
[1, 1, 4, 4, 4],
[3, 3, 5, 5, 5],
[3, 3, 5, 5, 5],
[3, 3, 5, 5, 5]],
[[2, 2, 6, 6, 6],
[2, 2, 6, 6, 6],
[7, 7, 8, 8, 8],
[7, 7, 8, 8, 8],
[7, 7, 8, 8, 8]],
[[2, 2, 6, 6, 6],
[2, 2, 6, 6, 6],
[7, 7, 8, 8, 8],
[7, 7, 8, 8, 8],
[7, 7, 8, 8, 8]],
[[2, 2, 6, 6, 6],
[2, 2, 6, 6, 6],
[7, 7, 8, 8, 8],
[7, 7, 8, 8, 8],
[7, 7, 8, 8, 8]]])
assert_array_equal(result, expected)
def test_block_with_mismatched_shape(self, block):
a = np.array([0, 0])
b = np.eye(2)
assert_raises(ValueError, block, [a, b])
assert_raises(ValueError, block, [b, a])
to_block = [[np.ones((2,3)), np.ones((2,2))],
[np.ones((2,2)), np.ones((2,2))]]
assert_raises(ValueError, block, to_block)
def test_no_lists(self, block):
assert_equal(block(1), np.array(1))
assert_equal(block(np.eye(3)), np.eye(3))
def test_invalid_nesting(self, block):
msg = 'depths are mismatched'
assert_raises_regex(ValueError, msg, block, [1, [2]])
assert_raises_regex(ValueError, msg, block, [1, []])
assert_raises_regex(ValueError, msg, block, [[1], 2])
assert_raises_regex(ValueError, msg, block, [[], 2])
assert_raises_regex(ValueError, msg, block, [
[[1], [2]],
[[3, 4]],
[5] # missing brackets
])
def test_empty_lists(self, block):
assert_raises_regex(ValueError, 'empty', block, [])
assert_raises_regex(ValueError, 'empty', block, [[]])
assert_raises_regex(ValueError, 'empty', block, [[1], []])
def test_tuple(self, block):
assert_raises_regex(TypeError, 'tuple', block, ([1, 2], [3, 4]))
assert_raises_regex(TypeError, 'tuple', block, [(1, 2), (3, 4)])
def test_different_ndims(self, block):
a = 1.
b = 2 * np.ones((1, 2))
c = 3 * np.ones((1, 1, 3))
result = block([a, b, c])
expected = np.array([[[1., 2., 2., 3., 3., 3.]]])
assert_equal(result, expected)
def test_different_ndims_depths(self, block):
a = 1.
b = 2 * np.ones((1, 2))
c = 3 * np.ones((1, 2, 3))
result = block([[a, b], [c]])
expected = np.array([[[1., 2., 2.],
[3., 3., 3.],
[3., 3., 3.]]])
assert_equal(result, expected)
def test_block_memory_order(self, block):
# 3D
arr_c = np.zeros((3,)*3, order='C')
arr_f = np.zeros((3,)*3, order='F')
b_c = [[[arr_c, arr_c],
[arr_c, arr_c]],
[[arr_c, arr_c],
[arr_c, arr_c]]]
b_f = [[[arr_f, arr_f],
[arr_f, arr_f]],
[[arr_f, arr_f],
[arr_f, arr_f]]]
assert block(b_c).flags['C_CONTIGUOUS']
assert block(b_f).flags['F_CONTIGUOUS']
arr_c = np.zeros((3, 3), order='C')
arr_f = np.zeros((3, 3), order='F')
# 2D
b_c = [[arr_c, arr_c],
[arr_c, arr_c]]
b_f = [[arr_f, arr_f],
[arr_f, arr_f]]
assert block(b_c).flags['C_CONTIGUOUS']
assert block(b_f).flags['F_CONTIGUOUS']
def test_block_dispatcher():
class ArrayLike:
pass
a = ArrayLike()
b = ArrayLike()
c = ArrayLike()
assert_equal(list(_block_dispatcher(a)), [a])
assert_equal(list(_block_dispatcher([a])), [a])
assert_equal(list(_block_dispatcher([a, b])), [a, b])
assert_equal(list(_block_dispatcher([[a], [b, [c]]])), [a, b, c])
# don't recurse into non-lists
assert_equal(list(_block_dispatcher((a, b))), [(a, b)])
Hacked By AnonymousFox1.0, Coded By AnonymousFox