Hacked By AnonymousFox
import sys
import gc
from hypothesis import given
from hypothesis.extra import numpy as hynp
import pytest
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_warns, HAS_REFCOUNT,
assert_raises_regex,
)
from numpy.core.arrayprint import _typelessdata
import textwrap
class TestArrayRepr:
def test_nan_inf(self):
x = np.array([np.nan, np.inf])
assert_equal(repr(x), 'array([nan, inf])')
def test_subclass(self):
class sub(np.ndarray): pass
# one dimensional
x1d = np.array([1, 2]).view(sub)
assert_equal(repr(x1d), 'sub([1, 2])')
# two dimensional
x2d = np.array([[1, 2], [3, 4]]).view(sub)
assert_equal(repr(x2d),
'sub([[1, 2],\n'
' [3, 4]])')
# two dimensional with flexible dtype
xstruct = np.ones((2,2), dtype=[('a', '<i4')]).view(sub)
assert_equal(repr(xstruct),
"sub([[(1,), (1,)],\n"
" [(1,), (1,)]], dtype=[('a', '<i4')])"
)
@pytest.mark.xfail(reason="See gh-10544")
def test_object_subclass(self):
class sub(np.ndarray):
def __new__(cls, inp):
obj = np.asarray(inp).view(cls)
return obj
def __getitem__(self, ind):
ret = super().__getitem__(ind)
return sub(ret)
# test that object + subclass is OK:
x = sub([None, None])
assert_equal(repr(x), 'sub([None, None], dtype=object)')
assert_equal(str(x), '[None None]')
x = sub([None, sub([None, None])])
assert_equal(repr(x),
'sub([None, sub([None, None], dtype=object)], dtype=object)')
assert_equal(str(x), '[None sub([None, None], dtype=object)]')
def test_0d_object_subclass(self):
# make sure that subclasses which return 0ds instead
# of scalars don't cause infinite recursion in str
class sub(np.ndarray):
def __new__(cls, inp):
obj = np.asarray(inp).view(cls)
return obj
def __getitem__(self, ind):
ret = super().__getitem__(ind)
return sub(ret)
x = sub(1)
assert_equal(repr(x), 'sub(1)')
assert_equal(str(x), '1')
x = sub([1, 1])
assert_equal(repr(x), 'sub([1, 1])')
assert_equal(str(x), '[1 1]')
# check it works properly with object arrays too
x = sub(None)
assert_equal(repr(x), 'sub(None, dtype=object)')
assert_equal(str(x), 'None')
# plus recursive object arrays (even depth > 1)
y = sub(None)
x[()] = y
y[()] = x
assert_equal(repr(x),
'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)')
assert_equal(str(x), '...')
x[()] = 0 # resolve circular references for garbage collector
# nested 0d-subclass-object
x = sub(None)
x[()] = sub(None)
assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)')
assert_equal(str(x), 'None')
# gh-10663
class DuckCounter(np.ndarray):
def __getitem__(self, item):
result = super().__getitem__(item)
if not isinstance(result, DuckCounter):
result = result[...].view(DuckCounter)
return result
def to_string(self):
return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many')
def __str__(self):
if self.shape == ():
return self.to_string()
else:
fmt = {'all': lambda x: x.to_string()}
return np.array2string(self, formatter=fmt)
dc = np.arange(5).view(DuckCounter)
assert_equal(str(dc), "[zero one two many many]")
assert_equal(str(dc[0]), "zero")
def test_self_containing(self):
arr0d = np.array(None)
arr0d[()] = arr0d
assert_equal(repr(arr0d),
'array(array(..., dtype=object), dtype=object)')
arr0d[()] = 0 # resolve recursion for garbage collector
arr1d = np.array([None, None])
arr1d[1] = arr1d
assert_equal(repr(arr1d),
'array([None, array(..., dtype=object)], dtype=object)')
arr1d[1] = 0 # resolve recursion for garbage collector
first = np.array(None)
second = np.array(None)
first[()] = second
second[()] = first
assert_equal(repr(first),
'array(array(array(..., dtype=object), dtype=object), dtype=object)')
first[()] = 0 # resolve circular references for garbage collector
def test_containing_list(self):
# printing square brackets directly would be ambiguuous
arr1d = np.array([None, None])
arr1d[0] = [1, 2]
arr1d[1] = [3]
assert_equal(repr(arr1d),
'array([list([1, 2]), list([3])], dtype=object)')
def test_void_scalar_recursion(self):
# gh-9345
repr(np.void(b'test')) # RecursionError ?
def test_fieldless_structured(self):
# gh-10366
no_fields = np.dtype([])
arr_no_fields = np.empty(4, dtype=no_fields)
assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])')
class TestComplexArray:
def test_str(self):
rvals = [0, 1, -1, np.inf, -np.inf, np.nan]
cvals = [complex(rp, ip) for rp in rvals for ip in rvals]
dtypes = [np.complex64, np.cdouble, np.clongdouble]
actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes]
wanted = [
'[0.+0.j]', '[0.+0.j]', '[0.+0.j]',
'[0.+1.j]', '[0.+1.j]', '[0.+1.j]',
'[0.-1.j]', '[0.-1.j]', '[0.-1.j]',
'[0.+infj]', '[0.+infj]', '[0.+infj]',
'[0.-infj]', '[0.-infj]', '[0.-infj]',
'[0.+nanj]', '[0.+nanj]', '[0.+nanj]',
'[1.+0.j]', '[1.+0.j]', '[1.+0.j]',
'[1.+1.j]', '[1.+1.j]', '[1.+1.j]',
'[1.-1.j]', '[1.-1.j]', '[1.-1.j]',
'[1.+infj]', '[1.+infj]', '[1.+infj]',
'[1.-infj]', '[1.-infj]', '[1.-infj]',
'[1.+nanj]', '[1.+nanj]', '[1.+nanj]',
'[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]',
'[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]',
'[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]',
'[-1.+infj]', '[-1.+infj]', '[-1.+infj]',
'[-1.-infj]', '[-1.-infj]', '[-1.-infj]',
'[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]',
'[inf+0.j]', '[inf+0.j]', '[inf+0.j]',
'[inf+1.j]', '[inf+1.j]', '[inf+1.j]',
'[inf-1.j]', '[inf-1.j]', '[inf-1.j]',
'[inf+infj]', '[inf+infj]', '[inf+infj]',
'[inf-infj]', '[inf-infj]', '[inf-infj]',
'[inf+nanj]', '[inf+nanj]', '[inf+nanj]',
'[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]',
'[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]',
'[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]',
'[-inf+infj]', '[-inf+infj]', '[-inf+infj]',
'[-inf-infj]', '[-inf-infj]', '[-inf-infj]',
'[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]',
'[nan+0.j]', '[nan+0.j]', '[nan+0.j]',
'[nan+1.j]', '[nan+1.j]', '[nan+1.j]',
'[nan-1.j]', '[nan-1.j]', '[nan-1.j]',
'[nan+infj]', '[nan+infj]', '[nan+infj]',
'[nan-infj]', '[nan-infj]', '[nan-infj]',
'[nan+nanj]', '[nan+nanj]', '[nan+nanj]']
for res, val in zip(actual, wanted):
assert_equal(res, val)
class TestArray2String:
def test_basic(self):
"""Basic test of array2string."""
a = np.arange(3)
assert_(np.array2string(a) == '[0 1 2]')
assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]')
assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]')
def test_unexpected_kwarg(self):
# ensure than an appropriate TypeError
# is raised when array2string receives
# an unexpected kwarg
with assert_raises_regex(TypeError, 'nonsense'):
np.array2string(np.array([1, 2, 3]),
nonsense=None)
def test_format_function(self):
"""Test custom format function for each element in array."""
def _format_function(x):
if np.abs(x) < 1:
return '.'
elif np.abs(x) < 2:
return 'o'
else:
return 'O'
x = np.arange(3)
x_hex = "[0x0 0x1 0x2]"
x_oct = "[0o0 0o1 0o2]"
assert_(np.array2string(x, formatter={'all':_format_function}) ==
"[. o O]")
assert_(np.array2string(x, formatter={'int_kind':_format_function}) ==
"[. o O]")
assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) ==
"[0.0000 1.0000 2.0000]")
assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}),
x_hex)
assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}),
x_oct)
x = np.arange(3.)
assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) ==
"[0.00 1.00 2.00]")
assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) ==
"[0.00 1.00 2.00]")
s = np.array(['abc', 'def'])
assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) ==
'[abcabc defdef]')
def test_structure_format_mixed(self):
dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
assert_equal(np.array2string(x),
"[('Sarah', [8., 7.]) ('John', [6., 7.])]")
np.set_printoptions(legacy='1.13')
try:
# for issue #5692
A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
A[5:].fill(np.datetime64('NaT'))
assert_equal(
np.array2string(A),
textwrap.dedent("""\
[('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',)
('NaT',) ('NaT',) ('NaT',)]""")
)
finally:
np.set_printoptions(legacy=False)
# same again, but with non-legacy behavior
assert_equal(
np.array2string(A),
textwrap.dedent("""\
[('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
('1970-01-01T00:00:00',) ( 'NaT',)
( 'NaT',) ( 'NaT',)
( 'NaT',) ( 'NaT',)]""")
)
# and again, with timedeltas
A = np.full(10, 123456, dtype=[("A", "m8[s]")])
A[5:].fill(np.datetime64('NaT'))
assert_equal(
np.array2string(A),
textwrap.dedent("""\
[(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',)
( 'NaT',) ( 'NaT',) ( 'NaT',)]""")
)
def test_structure_format_int(self):
# See #8160
struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)])
assert_equal(np.array2string(struct_int),
"[([ 1, -1],) ([123, 1],)]")
struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
dtype=[('B', 'i4', (2, 2))])
assert_equal(np.array2string(struct_2dint),
"[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]")
def test_structure_format_float(self):
# See #8172
array_scalar = np.array(
(1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)")
def test_unstructured_void_repr(self):
a = np.array([27, 91, 50, 75, 7, 65, 10, 8,
27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8')
assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')")
assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'")
assert_equal(repr(a),
r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n"
r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')")
assert_equal(eval(repr(a), vars(np)), a)
assert_equal(eval(repr(a[0]), vars(np)), a[0])
def test_edgeitems_kwarg(self):
# previously the global print options would be taken over the kwarg
arr = np.zeros(3, int)
assert_equal(
np.array2string(arr, edgeitems=1, threshold=0),
"[0 ... 0]"
)
def test_summarize_1d(self):
A = np.arange(1001)
strA = '[ 0 1 2 ... 998 999 1000]'
assert_equal(str(A), strA)
reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])'
assert_equal(repr(A), reprA)
def test_summarize_2d(self):
A = np.arange(1002).reshape(2, 501)
strA = '[[ 0 1 2 ... 498 499 500]\n' \
' [ 501 502 503 ... 999 1000 1001]]'
assert_equal(str(A), strA)
reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \
' [ 501, 502, 503, ..., 999, 1000, 1001]])'
assert_equal(repr(A), reprA)
def test_summarize_structure(self):
A = (np.arange(2002, dtype="<i8").reshape(2, 1001)
.view([('i', "<i8", (1001,))]))
strA = ("[[([ 0, 1, 2, ..., 998, 999, 1000],)]\n"
" [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]]")
assert_equal(str(A), strA)
reprA = ("array([[([ 0, 1, 2, ..., 998, 999, 1000],)],\n"
" [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]],\n"
" dtype=[('i', '<i8', (1001,))])")
assert_equal(repr(A), reprA)
B = np.ones(2002, dtype=">i8").view([('i', ">i8", (2, 1001))])
strB = "[([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)]"
assert_equal(str(B), strB)
reprB = (
"array([([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)],\n"
" dtype=[('i', '>i8', (2, 1001))])"
)
assert_equal(repr(B), reprB)
C = (np.arange(22, dtype="<i8").reshape(2, 11)
.view([('i1', "<i8"), ('i10', "<i8", (10,))]))
strC = "[[( 0, [ 1, ..., 10])]\n [(11, [12, ..., 21])]]"
assert_equal(np.array2string(C, threshold=1, edgeitems=1), strC)
def test_linewidth(self):
a = np.full(6, 1)
def make_str(a, width, **kw):
return np.array2string(a, separator="", max_line_width=width, **kw)
assert_equal(make_str(a, 8, legacy='1.13'), '[111111]')
assert_equal(make_str(a, 7, legacy='1.13'), '[111111]')
assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n'
' 11]')
assert_equal(make_str(a, 8), '[111111]')
assert_equal(make_str(a, 7), '[11111\n'
' 1]')
assert_equal(make_str(a, 5), '[111\n'
' 111]')
b = a[None,None,:]
assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]')
assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]')
assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n'
' 1]]]')
assert_equal(make_str(b, 12), '[[[111111]]]')
assert_equal(make_str(b, 9), '[[[111\n'
' 111]]]')
assert_equal(make_str(b, 8), '[[[11\n'
' 11\n'
' 11]]]')
def test_wide_element(self):
a = np.array(['xxxxx'])
assert_equal(
np.array2string(a, max_line_width=5),
"['xxxxx']"
)
assert_equal(
np.array2string(a, max_line_width=5, legacy='1.13'),
"[ 'xxxxx']"
)
def test_multiline_repr(self):
class MultiLine:
def __repr__(self):
return "Line 1\nLine 2"
a = np.array([[None, MultiLine()], [MultiLine(), None]])
assert_equal(
np.array2string(a),
'[[None Line 1\n'
' Line 2]\n'
' [Line 1\n'
' Line 2 None]]'
)
assert_equal(
np.array2string(a, max_line_width=5),
'[[None\n'
' Line 1\n'
' Line 2]\n'
' [Line 1\n'
' Line 2\n'
' None]]'
)
assert_equal(
repr(a),
'array([[None, Line 1\n'
' Line 2],\n'
' [Line 1\n'
' Line 2, None]], dtype=object)'
)
class MultiLineLong:
def __repr__(self):
return "Line 1\nLooooooooooongestLine2\nLongerLine 3"
a = np.array([[None, MultiLineLong()], [MultiLineLong(), None]])
assert_equal(
repr(a),
'array([[None, Line 1\n'
' LooooooooooongestLine2\n'
' LongerLine 3 ],\n'
' [Line 1\n'
' LooooooooooongestLine2\n'
' LongerLine 3 , None]], dtype=object)'
)
assert_equal(
np.array_repr(a, 20),
'array([[None,\n'
' Line 1\n'
' LooooooooooongestLine2\n'
' LongerLine 3 ],\n'
' [Line 1\n'
' LooooooooooongestLine2\n'
' LongerLine 3 ,\n'
' None]],\n'
' dtype=object)'
)
def test_nested_array_repr(self):
a = np.empty((2, 2), dtype=object)
a[0, 0] = np.eye(2)
a[0, 1] = np.eye(3)
a[1, 0] = None
a[1, 1] = np.ones((3, 1))
assert_equal(
repr(a),
'array([[array([[1., 0.],\n'
' [0., 1.]]), array([[1., 0., 0.],\n'
' [0., 1., 0.],\n'
' [0., 0., 1.]])],\n'
' [None, array([[1.],\n'
' [1.],\n'
' [1.]])]], dtype=object)'
)
@given(hynp.from_dtype(np.dtype("U")))
def test_any_text(self, text):
# This test checks that, given any value that can be represented in an
# array of dtype("U") (i.e. unicode string), ...
a = np.array([text, text, text])
# casting a list of them to an array does not e.g. truncate the value
assert_equal(a[0], text)
# and that np.array2string puts a newline in the expected location
expected_repr = "[{0!r} {0!r}\n {0!r}]".format(text)
result = np.array2string(a, max_line_width=len(repr(text)) * 2 + 3)
assert_equal(result, expected_repr)
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
def test_refcount(self):
# make sure we do not hold references to the array due to a recursive
# closure (gh-10620)
gc.disable()
a = np.arange(2)
r1 = sys.getrefcount(a)
np.array2string(a)
np.array2string(a)
r2 = sys.getrefcount(a)
gc.collect()
gc.enable()
assert_(r1 == r2)
class TestPrintOptions:
"""Test getting and setting global print options."""
def setup_method(self):
self.oldopts = np.get_printoptions()
def teardown_method(self):
np.set_printoptions(**self.oldopts)
def test_basic(self):
x = np.array([1.5, 0, 1.234567890])
assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])")
np.set_printoptions(precision=4)
assert_equal(repr(x), "array([1.5 , 0. , 1.2346])")
def test_precision_zero(self):
np.set_printoptions(precision=0)
for values, string in (
([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."),
([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."),
([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."),
([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")):
x = np.array(values)
assert_equal(repr(x), "array([%s])" % string)
def test_formatter(self):
x = np.arange(3)
np.set_printoptions(formatter={'all':lambda x: str(x-1)})
assert_equal(repr(x), "array([-1, 0, 1])")
def test_formatter_reset(self):
x = np.arange(3)
np.set_printoptions(formatter={'all':lambda x: str(x-1)})
assert_equal(repr(x), "array([-1, 0, 1])")
np.set_printoptions(formatter={'int':None})
assert_equal(repr(x), "array([0, 1, 2])")
np.set_printoptions(formatter={'all':lambda x: str(x-1)})
assert_equal(repr(x), "array([-1, 0, 1])")
np.set_printoptions(formatter={'all':None})
assert_equal(repr(x), "array([0, 1, 2])")
np.set_printoptions(formatter={'int':lambda x: str(x-1)})
assert_equal(repr(x), "array([-1, 0, 1])")
np.set_printoptions(formatter={'int_kind':None})
assert_equal(repr(x), "array([0, 1, 2])")
x = np.arange(3.)
np.set_printoptions(formatter={'float':lambda x: str(x-1)})
assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
np.set_printoptions(formatter={'float_kind':None})
assert_equal(repr(x), "array([0., 1., 2.])")
def test_0d_arrays(self):
assert_equal(str(np.array('café', '<U4')), 'café')
assert_equal(repr(np.array('café', '<U4')),
"array('café', dtype='<U4')")
assert_equal(str(np.array('test', np.str_)), 'test')
a = np.zeros(1, dtype=[('a', '<i4', (3,))])
assert_equal(str(a[0]), '([0, 0, 0],)')
assert_equal(repr(np.datetime64('2005-02-25')[...]),
"array('2005-02-25', dtype='datetime64[D]')")
assert_equal(repr(np.timedelta64('10', 'Y')[...]),
"array(10, dtype='timedelta64[Y]')")
# repr of 0d arrays is affected by printoptions
x = np.array(1)
np.set_printoptions(formatter={'all':lambda x: "test"})
assert_equal(repr(x), "array(test)")
# str is unaffected
assert_equal(str(x), "1")
# check `style` arg raises
assert_warns(DeprecationWarning, np.array2string,
np.array(1.), style=repr)
# but not in legacy mode
np.array2string(np.array(1.), style=repr, legacy='1.13')
# gh-10934 style was broken in legacy mode, check it works
np.array2string(np.array(1.), legacy='1.13')
def test_float_spacing(self):
x = np.array([1., 2., 3.])
y = np.array([1., 2., -10.])
z = np.array([100., 2., -1.])
w = np.array([-100., 2., 1.])
assert_equal(repr(x), 'array([1., 2., 3.])')
assert_equal(repr(y), 'array([ 1., 2., -10.])')
assert_equal(repr(np.array(y[0])), 'array(1.)')
assert_equal(repr(np.array(y[-1])), 'array(-10.)')
assert_equal(repr(z), 'array([100., 2., -1.])')
assert_equal(repr(w), 'array([-100., 2., 1.])')
assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])')
assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])')
x = np.array([np.inf, 100000, 1.1234])
y = np.array([np.inf, 100000, -1.1234])
z = np.array([np.inf, 1.1234, -1e120])
np.set_printoptions(precision=2)
assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])')
assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])')
assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])')
def test_bool_spacing(self):
assert_equal(repr(np.array([True, True])),
'array([ True, True])')
assert_equal(repr(np.array([True, False])),
'array([ True, False])')
assert_equal(repr(np.array([True])),
'array([ True])')
assert_equal(repr(np.array(True)),
'array(True)')
assert_equal(repr(np.array(False)),
'array(False)')
def test_sign_spacing(self):
a = np.arange(4.)
b = np.array([1.234e9])
c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
assert_equal(repr(a), 'array([0., 1., 2., 3.])')
assert_equal(repr(np.array(1.)), 'array(1.)')
assert_equal(repr(b), 'array([1.234e+09])')
assert_equal(repr(np.array([0.])), 'array([0.])')
assert_equal(repr(c),
"array([1. +1.j , 1.12345679+1.12345679j])")
assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
np.set_printoptions(sign=' ')
assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
assert_equal(repr(np.array(1.)), 'array( 1.)')
assert_equal(repr(b), 'array([ 1.234e+09])')
assert_equal(repr(c),
"array([ 1. +1.j , 1.12345679+1.12345679j])")
assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
np.set_printoptions(sign='+')
assert_equal(repr(a), 'array([+0., +1., +2., +3.])')
assert_equal(repr(np.array(1.)), 'array(+1.)')
assert_equal(repr(b), 'array([+1.234e+09])')
assert_equal(repr(c),
"array([+1. +1.j , +1.12345679+1.12345679j])")
np.set_printoptions(legacy='1.13')
assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
assert_equal(repr(b), 'array([ 1.23400000e+09])')
assert_equal(repr(-b), 'array([ -1.23400000e+09])')
assert_equal(repr(np.array(1.)), 'array(1.0)')
assert_equal(repr(np.array([0.])), 'array([ 0.])')
assert_equal(repr(c),
"array([ 1.00000000+1.j , 1.12345679+1.12345679j])")
# gh-10383
assert_equal(str(np.array([-1., 10])), "[ -1. 10.]")
assert_raises(TypeError, np.set_printoptions, wrongarg=True)
def test_float_overflow_nowarn(self):
# make sure internal computations in FloatingFormat don't
# warn about overflow
repr(np.array([1e4, 0.1], dtype='f2'))
def test_sign_spacing_structured(self):
a = np.ones(2, dtype='<f,<f')
assert_equal(repr(a),
"array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])")
assert_equal(repr(a[0]), "(1., 1.)")
def test_floatmode(self):
x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244,
0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16)
y = np.array([0.2918820979355541, 0.5064172631089138,
0.2848750619642916, 0.4342965294660567,
0.7326538397312751, 0.3459503329096204,
0.0862072768214508, 0.39112753029631175],
dtype=np.float64)
z = np.arange(6, dtype=np.float16)/10
c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
# also make sure 1e23 is right (is between two fp numbers)
w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64)
# note: we construct w from the strings `1eXX` instead of doing
# `10.**arange(24)` because it turns out the two are not equivalent in
# python. On some architectures `1e23 != 10.**23`.
wp = np.array([1.234e1, 1e2, 1e123])
# unique mode
np.set_printoptions(floatmode='unique')
assert_equal(repr(x),
"array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
" 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
assert_equal(repr(y),
"array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n"
" 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n"
" 0.0862072768214508 , 0.39112753029631175])")
assert_equal(repr(z),
"array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
assert_equal(repr(w),
"array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n"
" 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n"
" 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n"
" 1.e+24])")
assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
assert_equal(repr(c),
"array([1. +1.j , 1.123456789+1.123456789j])")
# maxprec mode, precision=8
np.set_printoptions(floatmode='maxprec', precision=8)
assert_equal(repr(x),
"array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
" 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
assert_equal(repr(y),
"array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
" 0.34595033, 0.08620728, 0.39112753])")
assert_equal(repr(z),
"array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
assert_equal(repr(w[::5]),
"array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
assert_equal(repr(c),
"array([1. +1.j , 1.12345679+1.12345679j])")
# fixed mode, precision=4
np.set_printoptions(floatmode='fixed', precision=4)
assert_equal(repr(x),
"array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n"
" 0.2383, 0.4226], dtype=float16)")
assert_equal(repr(y),
"array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])")
assert_equal(repr(z),
"array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)")
assert_equal(repr(w[::5]),
"array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])")
assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])")
assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])")
assert_equal(repr(c),
"array([1.0000+1.0000j, 1.1235+1.1235j])")
# for larger precision, representation error becomes more apparent:
np.set_printoptions(floatmode='fixed', precision=8)
assert_equal(repr(z),
"array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n"
" 0.50000000], dtype=float16)")
# maxprec_equal mode, precision=8
np.set_printoptions(floatmode='maxprec_equal', precision=8)
assert_equal(repr(x),
"array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n"
" 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)")
assert_equal(repr(y),
"array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
" 0.34595033, 0.08620728, 0.39112753])")
assert_equal(repr(z),
"array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
assert_equal(repr(w[::5]),
"array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
assert_equal(repr(c),
"array([1.00000000+1.00000000j, 1.12345679+1.12345679j])")
# test unique special case (gh-18609)
a = np.float64.fromhex('-1p-97')
assert_equal(np.float64(np.array2string(a, floatmode='unique')), a)
def test_legacy_mode_scalars(self):
# in legacy mode, str of floats get truncated, and complex scalars
# use * for non-finite imaginary part
np.set_printoptions(legacy='1.13')
assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912')
assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)')
np.set_printoptions(legacy=False)
assert_equal(str(np.float64(1.123456789123456789)),
'1.1234567891234568')
assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)')
def test_legacy_stray_comma(self):
np.set_printoptions(legacy='1.13')
assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]')
np.set_printoptions(legacy=False)
assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]')
def test_dtype_linewidth_wrapping(self):
np.set_printoptions(linewidth=75)
assert_equal(repr(np.arange(10,20., dtype='f4')),
"array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)")
assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\
array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.],
dtype=float32)"""))
styp = '<U4'
assert_equal(repr(np.ones(3, dtype=styp)),
"array(['1', '1', '1'], dtype='{}')".format(styp))
assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\
array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],
dtype='{}')""".format(styp)))
@pytest.mark.parametrize(
['native'],
[
('bool',),
('uint8',),
('uint16',),
('uint32',),
('uint64',),
('int8',),
('int16',),
('int32',),
('int64',),
('float16',),
('float32',),
('float64',),
('U1',), # 4-byte width string
],
)
def test_dtype_endianness_repr(self, native):
'''
there was an issue where
repr(array([0], dtype='<u2')) and repr(array([0], dtype='>u2'))
both returned the same thing:
array([0], dtype=uint16)
even though their dtypes have different endianness.
'''
native_dtype = np.dtype(native)
non_native_dtype = native_dtype.newbyteorder()
non_native_repr = repr(np.array([1], non_native_dtype))
native_repr = repr(np.array([1], native_dtype))
# preserve the sensible default of only showing dtype if nonstandard
assert ('dtype' in native_repr) ^ (native_dtype in _typelessdata),\
("an array's repr should show dtype if and only if the type "
'of the array is NOT one of the standard types '
'(e.g., int32, bool, float64).')
if non_native_dtype.itemsize > 1:
# if the type is >1 byte, the non-native endian version
# must show endianness.
assert non_native_repr != native_repr
assert f"dtype='{non_native_dtype.byteorder}" in non_native_repr
def test_linewidth_repr(self):
a = np.full(7, fill_value=2)
np.set_printoptions(linewidth=17)
assert_equal(
repr(a),
textwrap.dedent("""\
array([2, 2, 2,
2, 2, 2,
2])""")
)
np.set_printoptions(linewidth=17, legacy='1.13')
assert_equal(
repr(a),
textwrap.dedent("""\
array([2, 2, 2,
2, 2, 2, 2])""")
)
a = np.full(8, fill_value=2)
np.set_printoptions(linewidth=18, legacy=False)
assert_equal(
repr(a),
textwrap.dedent("""\
array([2, 2, 2,
2, 2, 2,
2, 2])""")
)
np.set_printoptions(linewidth=18, legacy='1.13')
assert_equal(
repr(a),
textwrap.dedent("""\
array([2, 2, 2, 2,
2, 2, 2, 2])""")
)
def test_linewidth_str(self):
a = np.full(18, fill_value=2)
np.set_printoptions(linewidth=18)
assert_equal(
str(a),
textwrap.dedent("""\
[2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2]""")
)
np.set_printoptions(linewidth=18, legacy='1.13')
assert_equal(
str(a),
textwrap.dedent("""\
[2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2]""")
)
def test_edgeitems(self):
np.set_printoptions(edgeitems=1, threshold=1)
a = np.arange(27).reshape((3, 3, 3))
assert_equal(
repr(a),
textwrap.dedent("""\
array([[[ 0, ..., 2],
...,
[ 6, ..., 8]],
...,
[[18, ..., 20],
...,
[24, ..., 26]]])""")
)
b = np.zeros((3, 3, 1, 1))
assert_equal(
repr(b),
textwrap.dedent("""\
array([[[[0.]],
...,
[[0.]]],
...,
[[[0.]],
...,
[[0.]]]])""")
)
# 1.13 had extra trailing spaces, and was missing newlines
np.set_printoptions(legacy='1.13')
assert_equal(
repr(a),
textwrap.dedent("""\
array([[[ 0, ..., 2],
...,
[ 6, ..., 8]],
...,
[[18, ..., 20],
...,
[24, ..., 26]]])""")
)
assert_equal(
repr(b),
textwrap.dedent("""\
array([[[[ 0.]],
...,
[[ 0.]]],
...,
[[[ 0.]],
...,
[[ 0.]]]])""")
)
def test_edgeitems_structured(self):
np.set_printoptions(edgeitems=1, threshold=1)
A = np.arange(5*2*3, dtype="<i8").view([('i', "<i8", (5, 2, 3))])
reprA = (
"array([([[[ 0, ..., 2], [ 3, ..., 5]], ..., "
"[[24, ..., 26], [27, ..., 29]]],)],\n"
" dtype=[('i', '<i8', (5, 2, 3))])"
)
assert_equal(repr(A), reprA)
def test_bad_args(self):
assert_raises(ValueError, np.set_printoptions, threshold=float('nan'))
assert_raises(TypeError, np.set_printoptions, threshold='1')
assert_raises(TypeError, np.set_printoptions, threshold=b'1')
assert_raises(TypeError, np.set_printoptions, precision='1')
assert_raises(TypeError, np.set_printoptions, precision=1.5)
def test_unicode_object_array():
expected = "array(['é'], dtype=object)"
x = np.array(['\xe9'], dtype=object)
assert_equal(repr(x), expected)
class TestContextManager:
def test_ctx_mgr(self):
# test that context manager actually works
with np.printoptions(precision=2):
s = str(np.array([2.0]) / 3)
assert_equal(s, '[0.67]')
def test_ctx_mgr_restores(self):
# test that print options are actually restrored
opts = np.get_printoptions()
with np.printoptions(precision=opts['precision'] - 1,
linewidth=opts['linewidth'] - 4):
pass
assert_equal(np.get_printoptions(), opts)
def test_ctx_mgr_exceptions(self):
# test that print options are restored even if an exception is raised
opts = np.get_printoptions()
try:
with np.printoptions(precision=2, linewidth=11):
raise ValueError
except ValueError:
pass
assert_equal(np.get_printoptions(), opts)
def test_ctx_mgr_as_smth(self):
opts = {"precision": 2}
with np.printoptions(**opts) as ctx:
saved_opts = ctx.copy()
assert_equal({k: saved_opts[k] for k in opts}, opts)
Hacked By AnonymousFox1.0, Coded By AnonymousFox